{"title":"Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings.","authors":"Syed Abdullah Syeddan","doi":"10.1615/JLongTermEffMedImplants.2022040062","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.</p>","PeriodicalId":16125,"journal":{"name":"Journal of long-term effects of medical implants","volume":"33 2","pages":"51-66"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of long-term effects of medical implants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JLongTermEffMedImplants.2022040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 1
Abstract
Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.
期刊介绍:
MEDICAL IMPLANTS are being used in every organ of the human body. Ideally, medical implants must have biomechanical properties comparable to those of autogenous tissues without any adverse effects. In each anatomic site, studies of the long-term effects of medical implants must be undertaken to determine accurately the safety and performance of the implants. Today, implant surgery has become an interdisciplinary undertaking involving a number of skilled and gifted specialists. For example, successful cochlear implants will involve audiologists, audiological physicians, speech and language therapists, otolaryngologists, nurses, neuro-otologists, teachers of the deaf, hearing therapists, cochlear implant manufacturers, and others involved with hearing-impaired and deaf individuals.