Time-varying higher moments in Bitcoin.

Leonardo Ieracitano Vieira, Márcio Poletti Laurini
{"title":"Time-varying higher moments in Bitcoin.","authors":"Leonardo Ieracitano Vieira, Márcio Poletti Laurini","doi":"10.1007/s42521-022-00072-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptocurrencies represent a new and important class of investments but are associated with asymmetric distributions and extreme price changes. We use a modeling structure where higher-order moments (scale, skewness and kurtosis) are time-varying, and additionally we used nontraditional innovations distributions to study the return series of the most important cryptocurrency, Bitcoin. Based on the estimation of a series of Generalized Autoregressive Score (GAS) models, we compare predictive performance using a loss function based on Value at Risk performance.</p>","PeriodicalId":72817,"journal":{"name":"Digital finance","volume":" ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42521-022-00072-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptocurrencies represent a new and important class of investments but are associated with asymmetric distributions and extreme price changes. We use a modeling structure where higher-order moments (scale, skewness and kurtosis) are time-varying, and additionally we used nontraditional innovations distributions to study the return series of the most important cryptocurrency, Bitcoin. Based on the estimation of a series of Generalized Autoregressive Score (GAS) models, we compare predictive performance using a loss function based on Value at Risk performance.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比特币中随时间变化的较高时刻。
加密货币代表了一种新的重要投资类别,但与非对称分布和极端价格变化有关。我们采用高阶矩(规模、偏斜度和峰度)随时间变化的建模结构,并使用非传统创新分布来研究最重要的加密货币比特币的收益序列。在对一系列广义自回归分数(GAS)模型进行估计的基础上,我们使用基于风险价值性能的损失函数对预测性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding temporal dynamics of jumps in cryptocurrency markets: evidence from tick-by-tick data Improving credit risk assessment in P2P lending with explainable machine learning survival analysis Deep learning for quadratic hedging in incomplete jump market Fintech: finance, technologies, and the society Clustering Uniswap v3 traders from their activity on multiple liquidity pools, via novel graph embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1