Inhibiting Monoamine Oxidase in CNS and CVS would be a Promising Approach to Mitigating Cardiovascular Complications in Neurodegenerative Disorders.

IF 2.7 4区 医学 Q3 NEUROSCIENCES CNS & neurological disorders drug targets Pub Date : 2024-01-01 DOI:10.2174/1871527322666230303115236
Princika Srivastava, Sachithra Thazhathuveedu Sudevan, Arumugam Thennavan, Bijo Mathew, S K Kanthlal
{"title":"Inhibiting Monoamine Oxidase in CNS and CVS would be a Promising Approach to Mitigating Cardiovascular Complications in Neurodegenerative Disorders.","authors":"Princika Srivastava, Sachithra Thazhathuveedu Sudevan, Arumugam Thennavan, Bijo Mathew, S K Kanthlal","doi":"10.2174/1871527322666230303115236","DOIUrl":null,"url":null,"abstract":"<p><p>The flavoenzyme monoamine oxidases (MAOs) are present in the mitochondrial outer membrane and are responsible for the metabolism of biogenic amines. MAO deamination of biological amines produces toxic byproducts such as amines, aldehydes, and hydrogen peroxide, which are significant in the pathophysiology of multiple neurodegenerative illnesses. In the cardiovascular system (CVS), these by-products target the mitochondria of cardiac cells leading to their dysfunction and producing redox imbalance in the endothelium of the blood vessels. This brings up the biological relationship between the susceptibility of getting cardiovascular disorders in neural patients. In the current scenario, MAO inhibitors are highly recommended by physicians worldwide for the therapy and management of various neurodegenerative disorders. Many interventional studies reveal the benefit of MAO inhibitors in CVS. Drug candidates who can target both the central and peripheral MAO could be a better to compensate for the cardiovascular comorbidities observed in neurodegenerative patients.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"331-341"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230303115236","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The flavoenzyme monoamine oxidases (MAOs) are present in the mitochondrial outer membrane and are responsible for the metabolism of biogenic amines. MAO deamination of biological amines produces toxic byproducts such as amines, aldehydes, and hydrogen peroxide, which are significant in the pathophysiology of multiple neurodegenerative illnesses. In the cardiovascular system (CVS), these by-products target the mitochondria of cardiac cells leading to their dysfunction and producing redox imbalance in the endothelium of the blood vessels. This brings up the biological relationship between the susceptibility of getting cardiovascular disorders in neural patients. In the current scenario, MAO inhibitors are highly recommended by physicians worldwide for the therapy and management of various neurodegenerative disorders. Many interventional studies reveal the benefit of MAO inhibitors in CVS. Drug candidates who can target both the central and peripheral MAO could be a better to compensate for the cardiovascular comorbidities observed in neurodegenerative patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制中枢神经系统和心血管系统中的单胺氧化酶将是缓解神经退行性疾病心血管并发症的有效方法。
单胺氧化酶(MAO)存在于线粒体外膜中,负责生物胺的代谢。MAO 对生物胺的脱氨作用会产生胺、醛和过氧化氢等有毒副产品,对多种神经退行性疾病的病理生理学具有重要影响。在心血管系统(CVS)中,这些副产品以心脏细胞的线粒体为目标,导致其功能障碍,并在血管内皮中产生氧化还原失衡。这就提出了神经病患者易患心血管疾病的生物学关系。目前,全世界的医生都强烈推荐使用 MAO 抑制剂来治疗和控制各种神经退行性疾病。许多干预性研究显示,MAO 抑制剂对 CVS 有益。同时针对中枢和外周 MAO 的候选药物可以更好地弥补神经退行性疾病患者的心血管并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
158
审稿时长
6-12 weeks
期刊介绍: Aims & Scope CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.
期刊最新文献
Choice and Timing of Antithrombotic after Ischemic Stroke, Intracerebral Hemorrhage or Cerebral Venous Thrombosis. New Psychometric Strategies for the Evaluation of Affective, Cognitive, and Psychosocial Functioning in Unipolar versus Bipolar Depression: Impact of Drug Treatment. Curbing Rhes Actions: Mechanism-based Molecular Target for Huntington's Disease and Tauopathies. G Protein-coupled Receptors (GPCRs) as Potential Therapeutics for Psychiatric Disorders. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1