Investigating Confidence Intervals of Item Parameters When Some Item Parameters Take Priors in the 2PL and 3PL Models.

IF 2.3 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Educational and Psychological Measurement Pub Date : 2023-04-01 Epub Date: 2022-05-16 DOI:10.1177/00131644221096431
Insu Paek, Zhongtian Lin, Robert Philip Chalmers
{"title":"Investigating Confidence Intervals of Item Parameters When Some Item Parameters Take Priors in the 2PL and 3PL Models.","authors":"Insu Paek, Zhongtian Lin, Robert Philip Chalmers","doi":"10.1177/00131644221096431","DOIUrl":null,"url":null,"abstract":"<p><p>To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori (MMAP) and posterior standard error (PSE) are estimated. Confidence intervals (CIs) for these parameters and other parameters which did not take any priors were investigated with popular prior distributions, different error covariance estimation methods, test lengths, and sample sizes. A seemingly paradoxical result was that, when priors were taken, the conditions of the error covariance estimation methods known to be better in the literature (Louis or Oakes method in this study) did not yield the best results for the CI performance, while the conditions of the cross-product method for the error covariance estimation which has the tendency of upward bias in estimating the standard errors exhibited better CI performance. Other important findings for the CI performance are also discussed.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 2","pages":"375-400"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221096431","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce the chance of Heywood cases or nonconvergence in estimating the 2PL or the 3PL model in the marginal maximum likelihood with the expectation-maximization (MML-EM) estimation method, priors for the item slope parameter in the 2PL model or for the pseudo-guessing parameter in the 3PL model can be used and the marginal maximum a posteriori (MMAP) and posterior standard error (PSE) are estimated. Confidence intervals (CIs) for these parameters and other parameters which did not take any priors were investigated with popular prior distributions, different error covariance estimation methods, test lengths, and sample sizes. A seemingly paradoxical result was that, when priors were taken, the conditions of the error covariance estimation methods known to be better in the literature (Louis or Oakes method in this study) did not yield the best results for the CI performance, while the conditions of the cross-product method for the error covariance estimation which has the tendency of upward bias in estimating the standard errors exhibited better CI performance. Other important findings for the CI performance are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当某些项目参数在 2PL 和 3PL 模型中具有优先权时,调查项目参数的置信区间。
为了减少用期望最大化边际极大似然估计法(MML-EM)估计2PL或3PL模型时出现海伍德情况或不收敛的机会,可以使用2PL模型中项目斜率参数或3PL模型中伪猜测参数的先验,并估计边际最大后验(MMAP)和后验标准误差(PSE)。通过使用流行的先验分布、不同的误差协方差估计方法、测试长度和样本量,研究了这些参数和其他未使用任何先验的参数的置信区间(CIs)。一个看似矛盾的结果是,当采用先验时,文献中已知较好的误差协方差估计方法的条件(本研究中的路易斯法或奥克斯法)并没有产生最佳的 CI 性能结果,而在估计标准误差时有向上偏差趋势的误差协方差估计的交叉积方法的条件则表现出较好的 CI 性能。本文还讨论了有关 CI 性能的其他重要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
期刊最新文献
Consistent Factor Score Regression: A Better Alternative for Uncorrected Factor Score Regression? Empowering Expert Judgment: A Data-Driven Decision Framework for Standard Setting in High-Dimensional and Data-Scarce Assessments. Evaluation of Residual-Based Fit Statistics for Item Response Theory Models in the Presence of Non-Responses. Conditional Reliability of Weighted Test Scores on a Bounded D-Scale. An Experimental Study on the Impact of Survey Stakes on Response Inconsistency in Mixed-Worded Scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1