Functional characterization of a novel TP53RK mutation identified in a family with Galloway-Mowat syndrome.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-12-01 DOI:10.1002/humu.24472
Ernestine Treimer, Tugba Kalayci, Sven Schumann, Ilknur Suer, Sara Greco, Denny Schanze, Michael J Schmeisser, Susanne J Kühl, Martin Zenker
{"title":"Functional characterization of a novel TP53RK mutation identified in a family with Galloway-Mowat syndrome.","authors":"Ernestine Treimer,&nbsp;Tugba Kalayci,&nbsp;Sven Schumann,&nbsp;Ilknur Suer,&nbsp;Sara Greco,&nbsp;Denny Schanze,&nbsp;Michael J Schmeisser,&nbsp;Susanne J Kühl,&nbsp;Martin Zenker","doi":"10.1002/humu.24472","DOIUrl":null,"url":null,"abstract":"<p><p>Galloway-Mowat syndrome (GAMOS) is a very rare condition characterized by early-onset nephrotic syndrome and microcephaly with variable neurologic features. While considerable genetic heterogeneity of GAMOS has been identified, the majority of cases are caused by pathogenic variants in genes encoding the four components of the Kinase, endopeptidase, and other proteins of small size (KEOPS) complex, one of which is TP53RK. Here we describe a 3-year-old male with progressive microcephaly, neurodevelopmental deficits, and glomerular proteinuria. He was found to carry a novel homozygous TP53RK missense variant, c.163C>G (p.Arg55Gly), which was considered as potentially disease-causing. We generated a morpholino tp53rk knockdown model in Xenopus laevis showing that the depletion of endogenous Tp53rk caused abnormal eye and head development. This phenotype could be rescued by the expression of human wildtype TP53RK but not by the c.163C>G mutant nor by another previously described GAMOS-associated mutant c.125G>A (p.Gly42Asp). These findings support the pathogenic role of the novel TP53RK variant.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/humu.24472","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Galloway-Mowat syndrome (GAMOS) is a very rare condition characterized by early-onset nephrotic syndrome and microcephaly with variable neurologic features. While considerable genetic heterogeneity of GAMOS has been identified, the majority of cases are caused by pathogenic variants in genes encoding the four components of the Kinase, endopeptidase, and other proteins of small size (KEOPS) complex, one of which is TP53RK. Here we describe a 3-year-old male with progressive microcephaly, neurodevelopmental deficits, and glomerular proteinuria. He was found to carry a novel homozygous TP53RK missense variant, c.163C>G (p.Arg55Gly), which was considered as potentially disease-causing. We generated a morpholino tp53rk knockdown model in Xenopus laevis showing that the depletion of endogenous Tp53rk caused abnormal eye and head development. This phenotype could be rescued by the expression of human wildtype TP53RK but not by the c.163C>G mutant nor by another previously described GAMOS-associated mutant c.125G>A (p.Gly42Asp). These findings support the pathogenic role of the novel TP53RK variant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在加洛韦-莫瓦特综合征家族中发现的一种新型TP53RK突变的功能特征
伽洛韦-莫瓦特综合征(GAMOS)是一种非常罕见的疾病,以早发性肾病综合征和小头畸形为特征,伴有不同的神经系统特征。虽然已经确定了GAMOS的相当大的遗传异质性,但大多数病例是由编码激酶、内肽酶和其他小尺寸(KEOPS)复合物的四种成分的基因的致病变异引起的,其中一种是TP53RK。在这里,我们描述了一个3岁的男性进行性小头畸形,神经发育缺陷,肾小球蛋白尿。发现该患者携带一种新型TP53RK纯合错义变异体c.163C>G (p.Arg55Gly),被认为可能致病。我们在非洲爪蟾中建立了一个morpholino tp53rk敲低模型,表明内源性tp53rk的缺失导致眼睛和头部发育异常。这种表型可以通过人类野生型TP53RK的表达来拯救,但不能通过c.163C>G突变体或另一个先前描述的gamos相关突变体c.125G>A (p.Gly42Asp)来拯救。这些发现支持了新型TP53RK变异的致病作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1