Toxic mechanism of the Mongolian medicine "Hunqile-7" based on metabonomics and the metabolism of intestinal flora.

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2023-02-01 DOI:10.1093/toxres/tfac081
Xiye Wang, Leer Bao, Mingyang Jiang, Dan Li, Liang Xu, Meirong Bai
{"title":"Toxic mechanism of the Mongolian medicine \"Hunqile-7\" based on metabonomics and the metabolism of intestinal flora.","authors":"Xiye Wang,&nbsp;Leer Bao,&nbsp;Mingyang Jiang,&nbsp;Dan Li,&nbsp;Liang Xu,&nbsp;Meirong Bai","doi":"10.1093/toxres/tfac081","DOIUrl":null,"url":null,"abstract":"<p><p>The traditional Mongolian medicine Hunqile-7 (HQL-7), which is mainly used to relieve pain in clinic, has certain toxicity. Therefore, toxicological investigation of HQL-7 is of great significance to its safety assessment. In this study, the toxic mechanism of HQL-7 was explored based on a combination of metabolomics and intestinal flora metabolism. UHPLC-MS was used to analyze the serum, liver and kidney samples of rats after intragastric administration of HQL-7. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16s rRNA V3-V4 region of bacteria. The experimental results confirm that the bagging algorithm improved the classification accuracy. The toxic dose, toxic intensity, and toxic target organ of HQL-7 were determined in toxicity tests. Seventeen biomarkers were identified and the metabolism dysregulation of these biomarkers may be responsible for the toxicity of HQL-7 in vivo. Several kinds of bacteria was demonstrated to be closely related to the physiological indices of renal and liver function, indicating liver and kidney damage induced by HQL-7 may be related to the disturbance of these intestinal bacteria. Overall, the toxic mechanism of HQL-7 was revealed in vivo, which not only provides a scientific basis for the safe and rational clinical use of HQL-7, but also opens up a new field of research on big data for Mongolian medicine.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"12 1","pages":"49-61"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfac081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional Mongolian medicine Hunqile-7 (HQL-7), which is mainly used to relieve pain in clinic, has certain toxicity. Therefore, toxicological investigation of HQL-7 is of great significance to its safety assessment. In this study, the toxic mechanism of HQL-7 was explored based on a combination of metabolomics and intestinal flora metabolism. UHPLC-MS was used to analyze the serum, liver and kidney samples of rats after intragastric administration of HQL-7. The decision tree and K Nearest Neighbor (KNN) model were established based on the bootstrap aggregation (bagging) algorithm to classify the omics data. After samples were extracted from rat feces, the high-throughput sequencing platform was used to analyze the 16s rRNA V3-V4 region of bacteria. The experimental results confirm that the bagging algorithm improved the classification accuracy. The toxic dose, toxic intensity, and toxic target organ of HQL-7 were determined in toxicity tests. Seventeen biomarkers were identified and the metabolism dysregulation of these biomarkers may be responsible for the toxicity of HQL-7 in vivo. Several kinds of bacteria was demonstrated to be closely related to the physiological indices of renal and liver function, indicating liver and kidney damage induced by HQL-7 may be related to the disturbance of these intestinal bacteria. Overall, the toxic mechanism of HQL-7 was revealed in vivo, which not only provides a scientific basis for the safe and rational clinical use of HQL-7, but also opens up a new field of research on big data for Mongolian medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于代谢组学和肠道菌群代谢的蒙药“浑孜乐7号”毒性机制研究。
蒙药Hunqile-7 (HQL-7)在临床上主要用于止痛,具有一定的毒性。因此,开展HQL-7的毒理学研究对其安全性评价具有重要意义。本研究基于代谢组学和肠道菌群代谢相结合的方法,探讨了HQL-7的毒性机制。采用高效液相色谱-质谱法对大鼠灌胃HQL-7后的血清、肝脏和肾脏样本进行分析。基于自举聚合(bagging)算法,建立决策树和K近邻(KNN)模型对组学数据进行分类。从大鼠粪便中提取样品后,利用高通量测序平台对细菌的16s rRNA V3-V4区进行分析。实验结果证实了bagging算法提高了分类精度。通过毒性试验测定HQL-7的毒性剂量、毒性强度和毒性靶器官。鉴定出17种生物标志物,这些生物标志物的代谢失调可能是HQL-7体内毒性的原因。有几种细菌与肾、肝功能的生理指标密切相关,提示HQL-7引起的肝肾损害可能与这些肠道细菌的紊乱有关。总体而言,揭示了HQL-7的体内毒性机制,不仅为临床安全合理使用HQL-7提供了科学依据,也为蒙医药大数据研究开辟了新的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Lipid-core nanocapsules containing simvastatin do not affect the biochemical and hematological indicators of toxicity in rats. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Antibiotic contaminants and their impact in Gingee River, Puducherry: insights from SPE-UPLC-MS/MS and zebrafish study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1