Driver Drowsiness EEG Detection Based on Tree Federated Learning and Interpretable Network.

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2023-03-01 DOI:10.1142/S0129065723500090
Xue Qin, Yi Niu, Huiyu Zhou, Xiaojie Li, Weikuan Jia, Yuanjie Zheng
{"title":"Driver Drowsiness EEG Detection Based on Tree Federated Learning and Interpretable Network.","authors":"Xue Qin,&nbsp;Yi Niu,&nbsp;Huiyu Zhou,&nbsp;Xiaojie Li,&nbsp;Weikuan Jia,&nbsp;Yuanjie Zheng","doi":"10.1142/S0129065723500090","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of driver's drowsiness state through Electroencephalogram (EEG) signals can effectively reduce traffic accidents, but EEG signals are usually stored in various clients in the form of small samples. This study attempts to construct an efficient and accurate privacy-preserving drowsiness monitoring system, and proposes a fusion model based on tree Federated Learning (FL) and Convolutional Neural Network (CNN), which can not only identify and explain the driver's drowsiness state, but also integrate the information of different clients under the premise of privacy protection. Each client uses CNN with the Global Average Pooling (GAP) layer and shares model parameters. The tree FL transforms communication relationships into a graph structure, and model parameters are transmitted in parallel along connected branches of the graph. Moreover, the Class Activation Mapping (CAM) is used to find distinctive EEG features for representing specific classes. On EEG data of 11 subjects, it is found that this method has higher average accuracy, F1-score and AUC than the traditional classification method, reaching 73.56%, 73.26% and 78.23%, respectively. Compared with the traditional FL algorithm, this method better protects the driver's privacy and improves communication efficiency.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 3","pages":"2350009"},"PeriodicalIF":6.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500090","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate identification of driver's drowsiness state through Electroencephalogram (EEG) signals can effectively reduce traffic accidents, but EEG signals are usually stored in various clients in the form of small samples. This study attempts to construct an efficient and accurate privacy-preserving drowsiness monitoring system, and proposes a fusion model based on tree Federated Learning (FL) and Convolutional Neural Network (CNN), which can not only identify and explain the driver's drowsiness state, but also integrate the information of different clients under the premise of privacy protection. Each client uses CNN with the Global Average Pooling (GAP) layer and shares model parameters. The tree FL transforms communication relationships into a graph structure, and model parameters are transmitted in parallel along connected branches of the graph. Moreover, the Class Activation Mapping (CAM) is used to find distinctive EEG features for representing specific classes. On EEG data of 11 subjects, it is found that this method has higher average accuracy, F1-score and AUC than the traditional classification method, reaching 73.56%, 73.26% and 78.23%, respectively. Compared with the traditional FL algorithm, this method better protects the driver's privacy and improves communication efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于树联邦学习和可解释网络的驾驶员困倦脑电图检测。
通过脑电图(EEG)信号准确识别驾驶员的困倦状态,可以有效减少交通事故的发生,但脑电图信号通常以小样本的形式存储在各个客户端中。本研究试图构建一个高效、准确的保护隐私的困倦监测系统,提出了一种基于树式联邦学习(FL)和卷积神经网络(CNN)的融合模型,既能识别和解释驾驶员的困倦状态,又能在保护隐私的前提下整合不同客户端的信息。每个客户端都使用带有全局平均池化(GAP)层的CNN并共享模型参数。树FL将通信关系转化为图结构,模型参数沿图的连通分支并行传输。此外,使用类激活映射(CAM)来寻找不同的EEG特征来表示特定的类。对11例被试的脑电数据进行分析,发现该方法的平均准确率、f1得分和AUC均高于传统分类方法,分别达到73.56%、73.26%和78.23%。与传统的FL算法相比,该方法更好地保护了驾驶员的隐私,提高了通信效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1