A Bayesian approach to estimating COVID-19 incidence and infection fatality rates.

IF 2 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-04-15 DOI:10.1093/biostatistics/kxad003
Justin J Slater, Aiyush Bansal, Harlan Campbell, Jeffrey S Rosenthal, Paul Gustafson, Patrick E Brown
{"title":"A Bayesian approach to estimating COVID-19 incidence and infection fatality rates.","authors":"Justin J Slater, Aiyush Bansal, Harlan Campbell, Jeffrey S Rosenthal, Paul Gustafson, Patrick E Brown","doi":"10.1093/biostatistics/kxad003","DOIUrl":null,"url":null,"abstract":"<p><p>Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"354-384"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用贝叶斯方法估算 COVID-19 发病率和感染死亡率。
对 2019 年冠状病毒疾病发病率和感染致死率(IFR)的天真估计存在各种偏差,其中许多偏差与优先检测有关。这促使全球流行病学家开展血清调查,通过检测血液中是否存在 SARS-CoV-2 抗体来衡量个人的免疫力。这些定量指标(滴度值)随后被用作以前或现在感染的替代指标。然而,充分利用这些数据的统计方法仍有待开发。以前的研究人员将这些连续值离散化,从而丢弃了潜在的有用信息。在本文中,我们展示了如何将多元混合模型与后分层相结合,在近似贝叶斯框架下估算累计发病率和 IFR,而无需离散化。在此过程中,我们考虑了估计感染人数和不完整死亡数据的不确定性,从而提供了 IFR 的估计值。我们使用加拿大 "战胜冠状病毒行动 "侵蚀调查的数据对该方法进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1