Next-generation sequencing approach to molecular diagnosis of Iranian patients with Duchenne/Becker muscular dystrophy: Several novel variants identified
{"title":"Next-generation sequencing approach to molecular diagnosis of Iranian patients with Duchenne/Becker muscular dystrophy: Several novel variants identified","authors":"MohammadKazem Bakhshandeh , Samira Behroozi","doi":"10.1016/j.ensci.2023.100446","DOIUrl":null,"url":null,"abstract":"<div><p>Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) constitute the second most prevalent muscular dystrophy, with large deletions or duplications accounting for 66% of cases. No effective treatment exists for DMD/BMD. At present, genetic diagnosis serves as the foundation for gene therapy treatments. In this study, a comprehensive molecular investigation was conducted. The subjects diagnosed with DMD/BMD were initially examined using multiplex ligation-dependent probe amplification (MLPA) technology. The negative MLPA results were analyzed further using next-generation sequencing (NGS) technology. The MLPA detected 201 deletions (65.9%) and 20 duplications (6.6%) along the dystrophin gene among the 305 Iranian patients examined. The deletion of exon 52 in the amenable skipping subgroup was associated with an earlier onset age and a more severe phenotype. Twenty-one of the small mutations found in 58 MLPA-negative patients were novel. The most prevalent variants were nonsense variants (46.5%), frameshift variants (31%), splicing variants (6.9%), missense variants (10.4%), and synonymous mutations (5.1%). Our results demonstrate that MLPA and NGS can be effective diagnostic tools for very young patients with a single exon deletion.</p></div>","PeriodicalId":37974,"journal":{"name":"eNeurologicalSci","volume":"30 ","pages":"Article 100446"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/7b/main.PMC9945705.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeurologicalSci","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405650223000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 1
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) constitute the second most prevalent muscular dystrophy, with large deletions or duplications accounting for 66% of cases. No effective treatment exists for DMD/BMD. At present, genetic diagnosis serves as the foundation for gene therapy treatments. In this study, a comprehensive molecular investigation was conducted. The subjects diagnosed with DMD/BMD were initially examined using multiplex ligation-dependent probe amplification (MLPA) technology. The negative MLPA results were analyzed further using next-generation sequencing (NGS) technology. The MLPA detected 201 deletions (65.9%) and 20 duplications (6.6%) along the dystrophin gene among the 305 Iranian patients examined. The deletion of exon 52 in the amenable skipping subgroup was associated with an earlier onset age and a more severe phenotype. Twenty-one of the small mutations found in 58 MLPA-negative patients were novel. The most prevalent variants were nonsense variants (46.5%), frameshift variants (31%), splicing variants (6.9%), missense variants (10.4%), and synonymous mutations (5.1%). Our results demonstrate that MLPA and NGS can be effective diagnostic tools for very young patients with a single exon deletion.
期刊介绍:
eNeurologicalSci provides a medium for the prompt publication of original articles in neurology and neuroscience from around the world. eNS places special emphasis on articles that: 1) provide guidance to clinicians around the world (Best Practices, Global Neurology); 2) report cutting-edge science related to neurology (Basic and Translational Sciences); 3) educate readers about relevant and practical clinical outcomes in neurology (Outcomes Research); and 4) summarize or editorialize the current state of the literature (Reviews, Commentaries, and Editorials). eNS accepts most types of manuscripts for consideration including original research papers, short communications, reviews, book reviews, letters to the Editor, opinions and editorials. Topics considered will be from neurology-related fields that are of interest to practicing physicians around the world. Examples include neuromuscular diseases, demyelination, atrophies, dementia, neoplasms, infections, epilepsies, disturbances of consciousness, stroke and cerebral circulation, growth and development, plasticity and intermediary metabolism. The fields covered may include neuroanatomy, neurochemistry, neuroendocrinology, neuroepidemiology, neurogenetics, neuroimmunology, neuroophthalmology, neuropathology, neuropharmacology, neurophysiology, neuropsychology, neuroradiology, neurosurgery, neurooncology, neurotoxicology, restorative neurology, and tropical neurology.