Yupu Zhang, Dr. Xinfeng Du, Dr. Jingying Zhai, Prof. Xiaojiang Xie
{"title":"Front Cover: A Tunable Colorimetric Carbon Dioxide Sensor Based on Ion-Exchanger- and Chromoionophore-Doped Hydrogel (Anal. Sens. 6/2023)","authors":"Yupu Zhang, Dr. Xinfeng Du, Dr. Jingying Zhai, Prof. Xiaojiang Xie","doi":"10.1002/anse.202300032","DOIUrl":null,"url":null,"abstract":"<p><b>The cover feature image shows</b> a two-dimensional (2D) colorimetric carbon dioxide (CO<sub>2</sub>) sensor composed of a gas-permeable polypropylene film (25 μm thick) and a signal transduction hydrogel layer (30 μm thick). The hydrogel layer contained a pH sensitive chromoionophore to indicate the CO<sub>2</sub> induced pH change, and a cationic amine to further capture CO<sub>2</sub> through the carbamate formation reaction. With this 2D colorimetric CO<sub>2</sub> optode, the CO<sub>2</sub> release from yeast-catalyzed flour fermentation was successfully monitored. More information can be found in the Research Article by Jingying Zhai, Xiaojiang Xie, and co-workers.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cover feature image shows a two-dimensional (2D) colorimetric carbon dioxide (CO2) sensor composed of a gas-permeable polypropylene film (25 μm thick) and a signal transduction hydrogel layer (30 μm thick). The hydrogel layer contained a pH sensitive chromoionophore to indicate the CO2 induced pH change, and a cationic amine to further capture CO2 through the carbamate formation reaction. With this 2D colorimetric CO2 optode, the CO2 release from yeast-catalyzed flour fermentation was successfully monitored. More information can be found in the Research Article by Jingying Zhai, Xiaojiang Xie, and co-workers.