Wikipedia pageviews as investors’ attention indicator for Nasdaq

Q1 Economics, Econometrics and Finance Intelligent Systems in Accounting, Finance and Management Pub Date : 2022-04-17 DOI:10.1002/isaf.1508
Raúl Gómez-Martínez, Carmen Orden-Cruz, Juan Gabriel Martínez-Navalón
{"title":"Wikipedia pageviews as investors’ attention indicator for Nasdaq","authors":"Raúl Gómez-Martínez,&nbsp;Carmen Orden-Cruz,&nbsp;Juan Gabriel Martínez-Navalón","doi":"10.1002/isaf.1508","DOIUrl":null,"url":null,"abstract":"<p>The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"29 1","pages":"41-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1508","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

Abstract

The attempt to measure investors’ mood to find an early indicator of financial markets has evolved and developed with the advancement of technology over the years. The first attempts were based on surveys, a long and expensive process. Nowadays, big data has made it possible to measure the investor’s mood accurately and almost entirely online. This paper analyzes the explanatory and predictive capacity of Wikipedia pageviews for the Nasdaq index. For this purpose, two econometric models have been developed. In both models, the explanatory variable is the number of Wikipedia visits, and the endogenous variable is Nasdaq index return. As an alternative to this approach, an algorithmic trading system has been developed. It uses Wikipedia visits as investment signals for long and short positions to check the predictability power of this indicator. It is determined that the volume of queries about Nasdaq companies is a statistically significant variable for expressing the evolution of this index. However, it has no predictive capacity. Keeping in mind the capacity of Wikipedia to exemplify Nasdaq trends, further studies should be conducted to determine how to make this indicator profitable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维基百科页面浏览量是投资者关注纳斯达克的指标
多年来,随着科技的进步,衡量投资者情绪、寻找金融市场早期指标的尝试不断演变和发展。第一次尝试是基于调查,这是一个漫长而昂贵的过程。如今,大数据已经使准确衡量投资者情绪成为可能,而且几乎完全是在线的。本文分析了维基百科页面浏览量对纳斯达克指数的解释和预测能力。为此目的,开发了两个计量经济模型。在这两个模型中,解释变量为维基百科访问量,内生变量为纳斯达克指数收益率。作为这种方法的替代方案,一种算法交易系统已经被开发出来。它使用维基百科访问量作为多头和空头头寸的投资信号,以检验该指标的可预测性。确定对纳斯达克公司的查询量是表示该指数演变的统计显著变量。然而,它没有预测能力。记住维基百科对纳斯达克趋势的示范能力,应该进行进一步的研究,以确定如何使这个指标有利可图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
期刊最新文献
The Technological Innovation of the Metaverse in Financial Sector: Current State, Opportunities, and Open Challenges Issue Information Liquidity forecasting at corporate and subsidiary levels using machine learning Identification of fraudulent financial statements through a multi-label classification approach Predicting carbon and oil price returns using hybrid models based on machine and deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1