{"title":"Comparison of Rotational Traction of Athletic Footwear on Varying Playing Surfaces Using Different Normal Loads","authors":"T.J. Serensits, A.S. McNitt","doi":"10.2134/ATS-2013-0073-RS","DOIUrl":null,"url":null,"abstract":"<p>As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete's shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (<i>Poa pratensis</i> L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study.</p>","PeriodicalId":100111,"journal":{"name":"Applied Turfgrass Science","volume":"11 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2134/ATS-2013-0073-RS","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Turfgrass Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.2134/ATS-2013-0073-RS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
As an athlete accelerates, stops, and changes direction, numerous forces are transmitted to the lower extremities. The interaction between an athlete's shoe and the playing surface has been indicated as a factor in lower extremity injury risk. In particular, high rotational forces may result in increased injuries to the lower extremities. Rotational traction forces produced by eight different cleated shoes on Kentucky bluegrass (Poa pratensis L.), AstroTurf GameDay Grass 3D, FieldTurf Revolution, and Sportexe Omnigrass 51 under three normal loads (vertical forces) of 787, 1054, and 1321 N were measured using Pennfoot, a portable traction testing device. Of the treatments in this study, shoe type influenced rotational traction most, with differences among shoes being nearly four times as large as those among playing surfaces. Traction was either the same or within several Nm on each surface tested. Traction on the three synthetic turf surfaces ranged from 49.3 to 53.1 Nm and the traction level of Kentucky bluegrass was 52.3 Nm. Traction levels among shoes ranged from 43.8 to 58.6 Nm. The results of this study indicate that footwear selection has a larger effect on rotational traction, and potentially injury risk, than the playing surfaces evaluated in this study.