The minimum work requirement for distillation processes

Yunus Cerci
{"title":"The minimum work requirement for distillation processes","authors":"Yunus Cerci","doi":"10.1016/S1164-0235(01)00036-X","DOIUrl":null,"url":null,"abstract":"<div><p>A typical ideal distillation process is proposed and analyzed using the first and second-laws of thermodynamics with particular attention to the minimum work requirement for individual processes. The distillation process consists of an evaporator, a condenser, a heat exchanger, and a number of heaters and coolers. Several Carnot engines are also employed to perform heat interactions of the distillation process with the surroundings and determine the minimum work requirement for processes. The Carnot engines give the maximum possible work output or the minimum work input associated with the processes, and therefore the net result of these inputs and outputs leads to the minimum work requirement for the entire distillation process. It is shown that the minimum work relation for the distillation process is the same as the minimum work input relation for an incomplete separation of incoming saline water, and depends only on the properties of the incoming saline water and the outgoing pure water and brine. Also, certain aspects of the minimum work relation found are discussed briefly.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 1","pages":"Pages 15-23"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(01)00036-X","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S116402350100036X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

A typical ideal distillation process is proposed and analyzed using the first and second-laws of thermodynamics with particular attention to the minimum work requirement for individual processes. The distillation process consists of an evaporator, a condenser, a heat exchanger, and a number of heaters and coolers. Several Carnot engines are also employed to perform heat interactions of the distillation process with the surroundings and determine the minimum work requirement for processes. The Carnot engines give the maximum possible work output or the minimum work input associated with the processes, and therefore the net result of these inputs and outputs leads to the minimum work requirement for the entire distillation process. It is shown that the minimum work relation for the distillation process is the same as the minimum work input relation for an incomplete separation of incoming saline water, and depends only on the properties of the incoming saline water and the outgoing pure water and brine. Also, certain aspects of the minimum work relation found are discussed briefly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸馏过程的最低工作要求
利用热力学第一和第二定律,提出并分析了一个典型的理想蒸馏过程,并特别注意了各个过程的最小功要求。蒸馏过程由蒸发器、冷凝器、热交换器和若干加热器和冷却器组成。几个卡诺热机也被用来进行蒸馏过程与周围环境的热相互作用,并确定过程的最小功要求。卡诺热机给出与过程相关的最大可能的功输出或最小的功输入,因此这些输入和输出的净结果导致整个蒸馏过程的最小功需求。结果表明,蒸馏过程的最小功关系与进料盐水不完全分离时的最小功输入关系相同,且仅取决于进料盐水和出料纯水和卤水的性质。此外,还简要讨论了所发现的最小功关系的某些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Announcement Some thermodynamic remarks on non-equilibrium fluid streams The exergy flux of radiative heat transfer for the special case of blackbody radiation Work and entropy production aspects of irreversible processes in closed and steady-state open systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1