Alexander Dietmüller, Siddhant Ray, Romain Jacob, L. Vanbever
{"title":"A new hope for network model generalization","authors":"Alexander Dietmüller, Siddhant Ray, Romain Jacob, L. Vanbever","doi":"10.1145/3563766.3564104","DOIUrl":null,"url":null,"abstract":"Generalizing machine learning (ML) models for network traffic dynamics tends to be considered a lost cause. Hence for every new task, we design new models and train them on model-specific datasets closely mimicking the deployment environments. Yet, an ML architecture called Transformer has enabled previously unimaginable generalization in other domains. Nowadays, one can download a model pre-trained on massive datasets and only fine-tune it for a specific task and context with comparatively little time and data. These fine-tuned models are now state-of-the-art for many benchmarks. We believe this progress could translate to networking and propose a Network Traffic Transformer (NTT), a transformer adapted to learn network dynamics from packet traces. Our initial results are promising: NTT seems able to generalize to new prediction tasks and environments. This study suggests there is still hope for generalization through future research.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"42 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Generalizing machine learning (ML) models for network traffic dynamics tends to be considered a lost cause. Hence for every new task, we design new models and train them on model-specific datasets closely mimicking the deployment environments. Yet, an ML architecture called Transformer has enabled previously unimaginable generalization in other domains. Nowadays, one can download a model pre-trained on massive datasets and only fine-tune it for a specific task and context with comparatively little time and data. These fine-tuned models are now state-of-the-art for many benchmarks. We believe this progress could translate to networking and propose a Network Traffic Transformer (NTT), a transformer adapted to learn network dynamics from packet traces. Our initial results are promising: NTT seems able to generalize to new prediction tasks and environments. This study suggests there is still hope for generalization through future research.