A new hope for network model generalization

Alexander Dietmüller, Siddhant Ray, Romain Jacob, L. Vanbever
{"title":"A new hope for network model generalization","authors":"Alexander Dietmüller, Siddhant Ray, Romain Jacob, L. Vanbever","doi":"10.1145/3563766.3564104","DOIUrl":null,"url":null,"abstract":"Generalizing machine learning (ML) models for network traffic dynamics tends to be considered a lost cause. Hence for every new task, we design new models and train them on model-specific datasets closely mimicking the deployment environments. Yet, an ML architecture called Transformer has enabled previously unimaginable generalization in other domains. Nowadays, one can download a model pre-trained on massive datasets and only fine-tune it for a specific task and context with comparatively little time and data. These fine-tuned models are now state-of-the-art for many benchmarks. We believe this progress could translate to networking and propose a Network Traffic Transformer (NTT), a transformer adapted to learn network dynamics from packet traces. Our initial results are promising: NTT seems able to generalize to new prediction tasks and environments. This study suggests there is still hope for generalization through future research.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"42 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Generalizing machine learning (ML) models for network traffic dynamics tends to be considered a lost cause. Hence for every new task, we design new models and train them on model-specific datasets closely mimicking the deployment environments. Yet, an ML architecture called Transformer has enabled previously unimaginable generalization in other domains. Nowadays, one can download a model pre-trained on massive datasets and only fine-tune it for a specific task and context with comparatively little time and data. These fine-tuned models are now state-of-the-art for many benchmarks. We believe this progress could translate to networking and propose a Network Traffic Transformer (NTT), a transformer adapted to learn network dynamics from packet traces. Our initial results are promising: NTT seems able to generalize to new prediction tasks and environments. This study suggests there is still hope for generalization through future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络模型泛化的新希望
将机器学习(ML)模型推广到网络流量动态往往被认为是失败的原因。因此,对于每个新任务,我们都设计新的模型,并在模型特定的数据集上训练它们,这些数据集与部署环境非常相似。然而,一个名为Transformer的ML架构在其他领域实现了以前难以想象的泛化。如今,人们可以下载一个在大量数据集上预先训练过的模型,只需要相对较少的时间和数据,就可以针对特定的任务和上下文对其进行微调。这些经过微调的模型现在在许多基准测试中都是最先进的。我们相信这一进展可以转化为网络,并提出了一种网络流量转换器(NTT),一种适应从数据包跟踪中学习网络动态的转换器。我们的初步结果是有希望的:NTT似乎能够推广到新的预测任务和环境。这项研究表明,未来的研究仍有推广的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The decoupling principle: a practical privacy framework Towards dual-band reconfigurable metasurfaces for satellite networking Sidecar: in-network performance enhancements in the age of paranoid transport protocols The internet of things in a laptop: rapid prototyping for IoT applications with digibox Making links on your web pages last longer than you
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1