Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts and Vahe Bandarian*,
{"title":"A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking","authors":"Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts and Vahe Bandarian*, ","doi":"10.1021/acsbiomedchemau.3c00043","DOIUrl":null,"url":null,"abstract":"<p >Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical <i>S</i>-adenosyl-<span>l</span>-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (<i>e.g.</i>, Phe) and charged (<i>e.g.</i>, Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2<i>S</i>,3<i>R</i>)- and (2<i>S</i>,3<i>S</i>)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing <i>E-</i> and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the <i>Z</i>-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 6","pages":"480–493"},"PeriodicalIF":3.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical S-adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (e.g., Phe) and charged (e.g., Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2S,3R)- and (2S,3S)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing E- and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the Z-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.