Short Rate Forecasting Based on the Inference from the CIR Model for Multiple Yield Curve Dynamics

L. Hin, N. Dokuchaev
{"title":"Short Rate Forecasting Based on the Inference from the CIR Model for Multiple Yield Curve Dynamics","authors":"L. Hin, N. Dokuchaev","doi":"10.2139/ssrn.2539556","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a strategy to extract the information on the market participants’ expectation of the future short rate from the cross-sectional zero coupon bond prices. In line with the current market practice of building different yield curves for different tenors, we construct multiple one-factor short rate processes to pin down the salient features of the yield curve at different tenors. We represent this information in the form of the Cox–Ingersoll–Ross model implied parameters, and show that this information can be used to forecast the future short rate. This approach of representing the information on the market participants’ consensus in the form of implied model parameters and using these implied parameters for forecasting purposes resembles the approach of representing the market expectation of the underlying asset volatility reflected by stock option prices in the form of implied volatility, and using it to forecast the realized volatility. We illustrate the implementation of this method using historical US STRIPS prices and effective Federal Funds rate.","PeriodicalId":112822,"journal":{"name":"ERN: Interest Rate Forecasts (Topic)","volume":"247 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Interest Rate Forecasts (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2539556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a strategy to extract the information on the market participants’ expectation of the future short rate from the cross-sectional zero coupon bond prices. In line with the current market practice of building different yield curves for different tenors, we construct multiple one-factor short rate processes to pin down the salient features of the yield curve at different tenors. We represent this information in the form of the Cox–Ingersoll–Ross model implied parameters, and show that this information can be used to forecast the future short rate. This approach of representing the information on the market participants’ consensus in the form of implied model parameters and using these implied parameters for forecasting purposes resembles the approach of representing the market expectation of the underlying asset volatility reflected by stock option prices in the form of implied volatility, and using it to forecast the realized volatility. We illustrate the implementation of this method using historical US STRIPS prices and effective Federal Funds rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多重收益率曲线CIR模型推理的短期利率预测
本文提出了一种从横截面零息债券价格中提取市场参与者对未来短期利率预期信息的策略。根据目前不同期限债券收益率曲线的市场实践,我们构建了多个单因素短期利率过程,以确定不同期限债券收益率曲线的显著特征。我们将这些信息以Cox-Ingersoll-Ross模型隐含参数的形式表示,并表明这些信息可以用于预测未来的短期利率。这种将市场参与者的共识信息以隐含模型参数的形式表示出来,并利用这些隐含参数进行预测的方法,类似于将股票期权价格所反映的标的资产波动率的市场预期以隐含波动率的形式表示出来,并利用隐含波动率来预测已实现波动率的方法。我们用历史的美国国债价格和有效的联邦基金利率来说明这种方法的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market Analysis and Dependencies Exploration of the Tunisia Interbank Offered Rate SOFR Bootstrapping Modeling Methodologies and Issues (w/Python and Excel Replicas of Bloomberg SOFR @ GitHub) An Evaluation of the Predictive Capabilities of the Yield Curve in India Monetary Policy Expectation Errors Pricing Interest Rate Derivatives after Ibor Fallback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1