Toni Levanen, J. Kaikkonen, Sari Nielsen, K. Pajukoski, M. Renfors, M. Valkama
{"title":"5G New Radio UL Coverage with Peak Clipping","authors":"Toni Levanen, J. Kaikkonen, Sari Nielsen, K. Pajukoski, M. Renfors, M. Valkama","doi":"10.1109/VTCFall.2017.8288109","DOIUrl":null,"url":null,"abstract":"For the 5G new radio physical layer the CP-OFDM waveform has been chosen as the baseline for communications below 40 GHz. The requirement for multicarrier waveforms used for uplink is to achieve similar coverage as achieved by SC-FDMA in LTE uplink. In this paper, multiple candidate waveforms with enhanced CP-OFDM processing proposed for 5G incorporating realistic 3GPP compliant power amplifier model and peak clipping are evaluated in uplink transmission, and compared against SC-FDMA in terms of maximum average power amplifier output power and coded block error rate. It is shown that multicarrier waveforms have minor disadvantage in single-PRB transmission, but as the allocation size increases to encounter frequency selective fading the multicarrier waveforms provide similar or even improved link budget compared to SC-FDMA uplink. This implies that given the expected cell edge throughput requirements for 5G mobile broadband services and expected power amplifier development, enhanced CP-OFDM waveforms can achieve the uplink coverage requirement.","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"29 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8288109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For the 5G new radio physical layer the CP-OFDM waveform has been chosen as the baseline for communications below 40 GHz. The requirement for multicarrier waveforms used for uplink is to achieve similar coverage as achieved by SC-FDMA in LTE uplink. In this paper, multiple candidate waveforms with enhanced CP-OFDM processing proposed for 5G incorporating realistic 3GPP compliant power amplifier model and peak clipping are evaluated in uplink transmission, and compared against SC-FDMA in terms of maximum average power amplifier output power and coded block error rate. It is shown that multicarrier waveforms have minor disadvantage in single-PRB transmission, but as the allocation size increases to encounter frequency selective fading the multicarrier waveforms provide similar or even improved link budget compared to SC-FDMA uplink. This implies that given the expected cell edge throughput requirements for 5G mobile broadband services and expected power amplifier development, enhanced CP-OFDM waveforms can achieve the uplink coverage requirement.