Preconditioned Continuation Model Predictive Control

A. Knyazev, Y. Fujii, A. Malyshev
{"title":"Preconditioned Continuation Model Predictive Control","authors":"A. Knyazev, Y. Fujii, A. Malyshev","doi":"10.1137/1.9781611974072.15","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"41 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) describes systems with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation $Ax=b$ of the Continuation NMPC (CNMPC) equations on every time step. The coefficient matrix $A$ of the linear system is often ill-conditioned, resulting in poor GMRES convergence, slowing down the on-line computation of the control by CNMPC, and reducing control quality. We adopt CNMPC for challenging minimum-time problems, and improve performance by introducing efficient preconditioning, utilizing parallel computing, and substituting MINRES for GMRES.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预条件延拓模型预测控制
模型预测控制(MPC)预测未来事件,采取适当的控制措施。非线性MPC (NMPC)描述具有非线性模型和/或约束的系统。2004年T. Ohtsuka提出了一种NMPC的延拓/GMRES方法,该方法使用GMRES迭代算法在每个时间步上求解延拓NMPC (CNMPC)方程的正演差分逼近$Ax=b$。线性系统的系数矩阵$A$往往是病态的,导致GMRES收敛性差,减慢了CNMPC控制的在线计算速度,降低了控制质量。我们采用CNMPC来解决具有挑战性的最短时间问题,并通过引入有效的预处理、利用并行计算和用MINRES代替GMRES来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a minimum L2-norm exact control of the Pauli equation Diffusive Realization of a Lyapunov Equation Solution, and Parallel Algorithms Implementation A Variable Reference Trajectory for Model-Free Glycemia Regulation Metzler Matrix Transform Determination using a Nonsmooth Optimization Technique with an Application to Interval Observers Identification of the Fragmentation Role in the Amyloid Assembling Processes and Application to their Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1