Multi-layered explanations from algorithmic impact assessments in the GDPR

M. Kaminski, Gianclaudio Malgieri
{"title":"Multi-layered explanations from algorithmic impact assessments in the GDPR","authors":"M. Kaminski, Gianclaudio Malgieri","doi":"10.1145/3351095.3372875","DOIUrl":null,"url":null,"abstract":"Impact assessments have received particular attention on both sides of the Atlantic as a tool for implementing algorithmic accountability. The aim of this paper is to address how Data Protection Impact Assessments (DPIAs) (Art. 35) in the European Union (EU)'s General Data Protection Regulation (GDPR) link the GDPR's two approaches to algorithmic accountability---individual rights and systemic governance--- and potentially lead to more accountable and explainable algorithms. We argue that algorithmic explanation should not be understood as a static statement, but as a circular and multi-layered transparency process based on several layers (general information about an algorithm, group-based explanations, and legal justification of individual decisions taken). We argue that the impact assessment process plays a crucial role in connecting internal company heuristics and risk mitigation to outward-facing rights, and in forming the substance of several kinds of explanations.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3372875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Impact assessments have received particular attention on both sides of the Atlantic as a tool for implementing algorithmic accountability. The aim of this paper is to address how Data Protection Impact Assessments (DPIAs) (Art. 35) in the European Union (EU)'s General Data Protection Regulation (GDPR) link the GDPR's two approaches to algorithmic accountability---individual rights and systemic governance--- and potentially lead to more accountable and explainable algorithms. We argue that algorithmic explanation should not be understood as a static statement, but as a circular and multi-layered transparency process based on several layers (general information about an algorithm, group-based explanations, and legal justification of individual decisions taken). We argue that the impact assessment process plays a crucial role in connecting internal company heuristics and risk mitigation to outward-facing rights, and in forming the substance of several kinds of explanations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GDPR中算法影响评估的多层解释
作为执行算法问责制的工具,影响评估在大西洋两岸都受到特别关注。本文的目的是解决欧盟(EU)通用数据保护条例(GDPR)中的数据保护影响评估(DPIAs)(第35条)如何将GDPR的两种方法与算法问责制(个人权利和系统治理)联系起来,并可能导致更负责任和可解释的算法。我们认为,算法解释不应被理解为静态陈述,而应被理解为基于几层(关于算法的一般信息、基于群体的解释和个人决策的法律依据)的循环和多层透明过程。我们认为,影响评估过程在将公司内部启发和风险缓解与面向外部的权利联系起来,以及形成几种解释的实质方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dirichlet uncertainty wrappers for actionable algorithm accuracy accountability and auditability Algorithmic targeting of social policies: fairness, accuracy, and distributed governance Regulating transparency?: Facebook, Twitter and the German Network Enforcement Act CtrlZ.AI zine fair: critical perspectives Fairness, accountability, transparency in AI at scale: lessons from national programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1