A Comparative Analysis for Leukocyte Classification Based on Various Deep Learning Models Using Transfer Learning

Aruna Kumari Kakumani, Vikas Katla, Vinisha Rekhawar, Anish Reddy Yellakonda
{"title":"A Comparative Analysis for Leukocyte Classification Based on Various Deep Learning Models Using Transfer Learning","authors":"Aruna Kumari Kakumani, Vikas Katla, Vinisha Rekhawar, Anish Reddy Yellakonda","doi":"10.1109/INCET57972.2023.10170443","DOIUrl":null,"url":null,"abstract":"Leukocytes, sometimes referred to as white blood cells (WBCs), are crucial to the healthy operation of the human body. WBC distribution in human body are biological markers that determine the immunity of human body to fight against infectious diseases. WBC detection and classification plays an important role in medical application. However, using manual microscopic evaluation is complicated and time consuming. To tackle the limitations associated with traditional methods, recently deep learning (D.L) based methods are much experimented and explored. In this paper, we implemented various D.L models for automatic classification of WBCs. A comparative study among pretrained networks namely Inceptionv3, MobileNetV3 and VGG-19 was performed using transfer learning on publicly available WBC images from Kaggle. Classification accuracy of WBC images using Inceptionv3, MobileNetV3 and VGG-19 is 99.76%, 99.25% and 86.50% respectively. Inceptionv3 was further compared with the existing works in the literature and is found to be superior.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Leukocytes, sometimes referred to as white blood cells (WBCs), are crucial to the healthy operation of the human body. WBC distribution in human body are biological markers that determine the immunity of human body to fight against infectious diseases. WBC detection and classification plays an important role in medical application. However, using manual microscopic evaluation is complicated and time consuming. To tackle the limitations associated with traditional methods, recently deep learning (D.L) based methods are much experimented and explored. In this paper, we implemented various D.L models for automatic classification of WBCs. A comparative study among pretrained networks namely Inceptionv3, MobileNetV3 and VGG-19 was performed using transfer learning on publicly available WBC images from Kaggle. Classification accuracy of WBC images using Inceptionv3, MobileNetV3 and VGG-19 is 99.76%, 99.25% and 86.50% respectively. Inceptionv3 was further compared with the existing works in the literature and is found to be superior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的各种深度学习模型的白细胞分类比较分析
白细胞,有时被称为白细胞(WBCs),对人体的健康运作至关重要。白细胞在人体内的分布是决定人体对传染病免疫能力的生物标志物。白细胞的检测与分类在医学应用中具有重要作用。然而,使用人工显微评估是复杂和耗时的。为了解决与传统方法相关的局限性,最近基于深度学习(D.L)的方法进行了大量实验和探索。在本文中,我们实现了各种D.L模型用于白细胞的自动分类。对来自Kaggle的公开WBC图像进行迁移学习,对Inceptionv3、MobileNetV3和VGG-19等预训练网络进行了比较研究。使用Inceptionv3、MobileNetV3和VGG-19对WBC图像的分类准确率分别为99.76%、99.25%和86.50%。我们进一步将Inceptionv3与文献中已有的作品进行了比较,发现前者更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning-Based Solution for Differently-Abled Persons in The Society CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment Implementation of Covid patient Health Monitoring System using IoT ESP Tuning to Reduce Auxiliary Power Consumption and Preserve Environment Real-time Recognition of Indian Sign Language using OpenCV and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1