{"title":"Non steady-state intersonic cracks in elastomer membranes under large static strain","authors":"T. Corre, M. Coret, E. Verron, B. Leblé","doi":"10.46298/JTCAM.6906","DOIUrl":null,"url":null,"abstract":"International audience\n \n Dynamic crack propagation in elastomer membranes is investigated; the focus is laid on cracks reaching the speed of shear waves in the material. The specific experimental setup developed to measure crack speed is presented in details. The protocol consists in (1) stretching an elastomer membrane under planar tension loading conditions, then (2) initiating a small crack on one side of the membrane. The crack speed is measured all along the crack path in both reference and actual configurations, including both acceleration and deceleration phases, i.e. non steady-state crack propagation phases. The influence of the prescribed stretch ratio on crack speed is analysed in the light of both these new experiments and the few previously published studies. Conclusions previously drawn for steady-state crack growth are extended to non steady-state conditions: stretch perpendicular to the crack path governs crack speed in intersonic crack propagation regime, and the role of the stretch in crack direction is minor.\n","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/JTCAM.6906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
International audience
Dynamic crack propagation in elastomer membranes is investigated; the focus is laid on cracks reaching the speed of shear waves in the material. The specific experimental setup developed to measure crack speed is presented in details. The protocol consists in (1) stretching an elastomer membrane under planar tension loading conditions, then (2) initiating a small crack on one side of the membrane. The crack speed is measured all along the crack path in both reference and actual configurations, including both acceleration and deceleration phases, i.e. non steady-state crack propagation phases. The influence of the prescribed stretch ratio on crack speed is analysed in the light of both these new experiments and the few previously published studies. Conclusions previously drawn for steady-state crack growth are extended to non steady-state conditions: stretch perpendicular to the crack path governs crack speed in intersonic crack propagation regime, and the role of the stretch in crack direction is minor.