The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background

G. Agazie, A. Anumarlapudi, A. Archibald, P. Baker, B. B'ecsy, L. Blecha, Alexander Bonilla, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, D. D’Orazio, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, E. Gardiner, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom,
{"title":"The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background","authors":"G. Agazie, A. Anumarlapudi, A. Archibald, P. Baker, B. B'ecsy, L. Blecha, Alexander Bonilla, A. Brazier, P. Brook, S. Burke-Spolaor, R. Burnette, R. Case, J. A. Casey-Clyde, M. Charisi, S. Chatterjee, K. Chatziioannou, B. Cheeseboro, Siyuan Chen, T. Cohen, J. Cordes, N. Cornish, F. Crawford, H. Cromartie, K. Crowter, C. Cutler, D. D’Orazio, M. DeCesar, D. DeGan, P. Demorest, Heling Deng, T. Dolch, B. Drachler, E. Ferrara, W. Fiore, E. Fonseca, G. Freedman, E. Gardiner, N. Garver-Daniels, P. Gentile, K. A. Gersbach, J. Glaser, D. Good, K. Gultekin, J. Hazboun, S. Hourihane, K. Islo, R. Jennings, A. Johnson, Megan L. Jones, A. Kaiser, D. Kaplan, L. Kelley, M. Kerr, J. Key, N. Laal, M. Lam, W. Lamb, T. Lazio, N. Lewandowska, T. Littenberg, Tianyu Liu, Jing Luo, R. Lynch, Chung-Pei Ma, D. Madison, A. McEwen, J. McKee, M. Mclaughlin, N. McMann, B. W. Meyers, P. Meyers, C. Mingarelli, A. Mitridate, P. Natarajan, C. Ng, D. Nice, S. Ocker, K. Olum, T. Pennucci, B. Perera, P. Petrov, N. Pol, H. Radovan, S. Ransom,","doi":"10.3847/2041-8213/ace18b","DOIUrl":null,"url":null,"abstract":"The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace18b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The NANOGrav 15 yr data set shows evidence for the presence of a low-frequency gravitational-wave background (GWB). While many physical processes can source such low-frequency gravitational waves, here we analyze the signal as coming from a population of supermassive black hole (SMBH) binaries distributed throughout the Universe. We show that astrophysically motivated models of SMBH binary populations are able to reproduce both the amplitude and shape of the observed low-frequency gravitational-wave spectrum. While multiple model variations are able to reproduce the GWB spectrum at our current measurement precision, our results highlight the importance of accurately modeling binary evolution for producing realistic GWB spectra. Additionally, while reasonable parameters are able to reproduce the 15 yr observations, the implied GWB amplitude necessitates either a large number of parameters to be at the edges of expected values or a small number of parameters to be notably different from standard expectations. While we are not yet able to definitively establish the origin of the inferred GWB signal, the consistency of the signal with astrophysical expectations offers a tantalizing prospect for confirming that SMBH binaries are able to form, reach subparsec separations, and eventually coalesce. As the significance grows over time, higher-order features of the GWB spectrum will definitively determine the nature of the GWB and allow for novel constraints on SMBH populations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nanogravity 15年数据集:引力波背景对超大质量黑洞双星的约束
nanogravity 15年的数据集显示了低频引力波背景(GWB)存在的证据。虽然许多物理过程都可以产生这种低频引力波,但在这里,我们将信号分析为来自分布在宇宙中的超大质量黑洞(SMBH)双星群。我们表明,SMBH双星群的天体物理驱动模型能够重现观测到的低频引力波频谱的振幅和形状。虽然在我们目前的测量精度下,多种模型变化能够再现GWB光谱,但我们的研究结果强调了准确建模二元演化对于产生真实的GWB光谱的重要性。此外,虽然合理的参数能够再现15年的观测值,但隐含的GWB幅度需要大量参数位于期望值的边缘,或者少量参数与标准期望显著不同。虽然我们还不能确定推断出的GWB信号的起源,但信号与天体物理学预期的一致性提供了一个诱人的前景,可以确认SMBH双星能够形成,达到亚秒差距的距离,并最终合并。随着时间的推移,GWB频谱的高阶特征将明确地决定GWB的性质,并允许对SMBH种群的新约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: “Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening” (2019, ApJL, 871, L23) Voyager 1 Electron Densities in the Very Local Interstellar Medium to beyond 160 au Formation of Fan-spine Magnetic Topology through Flux Emergence and Subsequent Jet Production The First Robust Evidence Showing a Dark Matter Density Spike Around the Supermassive Black Hole in OJ 287 Evidence for a Redshifted Excess in the Intracluster Light Fractions of Merging Clusters at z ∼ 0.8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1