Redefining self-similarity in natural images for denoising using graph signal gradient

Jiahao Pang, Gene Cheung, Wei Hu, O. Au
{"title":"Redefining self-similarity in natural images for denoising using graph signal gradient","authors":"Jiahao Pang, Gene Cheung, Wei Hu, O. Au","doi":"10.1109/APSIPA.2014.7041627","DOIUrl":null,"url":null,"abstract":"Image denoising is the most basic inverse imaging problem. As an under-determined problem, appropriate definition of image priors to regularize the problem is crucial. Among recent proposed priors for image denoising are: i) graph Laplacian regularizer where a given pixel patch is assumed to be smooth in the graph-signal domain; and ii) self-similarity prior where image patches are assumed to recur throughout a natural image in non-local spatial regions. In our first contribution, we demonstrate that the graph Laplacian regularizer converges to a continuous time functional counterpart, and careful selection of its features can lead to a discriminant signal prior. In our second contribution, we redefine patch self-similarity in terms of patch gradients and argue that the new definition results in a more accurate estimate of the graph Laplacian matrix, and thus better image denoising performance. Experiments show that our designed algorithm based on graph Laplacian regularizer and gradient-based self-similarity can outperform non-local means (NLM) denoising by up to 1.4 dB in PSNR.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"35 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Image denoising is the most basic inverse imaging problem. As an under-determined problem, appropriate definition of image priors to regularize the problem is crucial. Among recent proposed priors for image denoising are: i) graph Laplacian regularizer where a given pixel patch is assumed to be smooth in the graph-signal domain; and ii) self-similarity prior where image patches are assumed to recur throughout a natural image in non-local spatial regions. In our first contribution, we demonstrate that the graph Laplacian regularizer converges to a continuous time functional counterpart, and careful selection of its features can lead to a discriminant signal prior. In our second contribution, we redefine patch self-similarity in terms of patch gradients and argue that the new definition results in a more accurate estimate of the graph Laplacian matrix, and thus better image denoising performance. Experiments show that our designed algorithm based on graph Laplacian regularizer and gradient-based self-similarity can outperform non-local means (NLM) denoising by up to 1.4 dB in PSNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新定义自然图像的自相似度,利用图信号梯度去噪
图像去噪是最基本的逆成像问题。作为一个欠定问题,适当的图像先验定义对问题进行正则化至关重要。最近提出的图像去噪的先验算法有:i)图拉普拉斯正则化,其中假设给定的像素块在图信号域中是光滑的;ii)自相似性先验,即假设图像斑块在非局部空间区域中在整个自然图像中反复出现。在我们的第一个贡献中,我们证明了图拉普拉斯正则化器收敛于连续时间函数对立物,并且仔细选择其特征可以导致判别信号先验。在我们的第二篇论文中,我们根据斑块梯度重新定义了斑块自相似性,并认为新的定义可以更准确地估计图拉普拉斯矩阵,从而获得更好的图像去噪性能。实验表明,基于图拉普拉斯正则化和基于梯度的自相似度的算法比非局部均值(NLM)去噪的PSNR提高了1.4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing of spatial filter by graph Fourier transform for EEG signals Intra line copy for HEVC screen content coding Design of FPGA-based rapid prototype spectral subtraction for hands-free speech applications Fetal ECG extraction using adaptive functional link artificial neural network Opened Pins Recommendation System to promote tourism sector in Chiang Rai Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1