Sébastien Maheux, J. King, A. El Damatty, F. Brancaleoni
{"title":"Nonlinear Coupling in Cable-Supported Bridges for Non-Analogous Modes","authors":"Sébastien Maheux, J. King, A. El Damatty, F. Brancaleoni","doi":"10.2749/nanjing.2022.0173","DOIUrl":null,"url":null,"abstract":"It has been shown that the nonlinear differential equations representing the structural system of a suspension bridge exhibit nonlinear modal coupling that can lead to large torsional vibrations of the bridge deck. Such nonlinear coupling could play a role in the stability of cable-supported bridges under wind effects. Therefore, this paper presents an investigation of nonlinear modal coupling in cable-supported bridges with an emphasis on coupling between pairs of non- analogous modes, i.e., modes having a weak correlation along the bridge deck between the verti- cal displacement and torsional rotation. A procedure for assessing nonlinear coupling that relies on nonlinear generalized stiffness parameters is utilized for this purpose. Results of nonlinear gen- eralized stiffness analysis for suspension bridges indicate that non-analogous modes have a weak- er nonlinear coupling compared to analogous modal pairs.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"31 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It has been shown that the nonlinear differential equations representing the structural system of a suspension bridge exhibit nonlinear modal coupling that can lead to large torsional vibrations of the bridge deck. Such nonlinear coupling could play a role in the stability of cable-supported bridges under wind effects. Therefore, this paper presents an investigation of nonlinear modal coupling in cable-supported bridges with an emphasis on coupling between pairs of non- analogous modes, i.e., modes having a weak correlation along the bridge deck between the verti- cal displacement and torsional rotation. A procedure for assessing nonlinear coupling that relies on nonlinear generalized stiffness parameters is utilized for this purpose. Results of nonlinear gen- eralized stiffness analysis for suspension bridges indicate that non-analogous modes have a weak- er nonlinear coupling compared to analogous modal pairs.