Backtesting Value-at-Risk Using Forecasts for Multiple Horizons, a Comment on the Forecast Rationality Tests of A.J. Patton and A. Timmermann

Lennart F. Hoogerheide, F. Ravazzolo, H. K. van Dijk
{"title":"Backtesting Value-at-Risk Using Forecasts for Multiple Horizons, a Comment on the Forecast Rationality Tests of A.J. Patton and A. Timmermann","authors":"Lennart F. Hoogerheide, F. Ravazzolo, H. K. van Dijk","doi":"10.2139/ssrn.1930841","DOIUrl":null,"url":null,"abstract":"Patton and Timmermann (2011, 'Forecast Rationality Tests Based on Multi-Horizon Bounds', Journal of Business & Economic Statistics, forthcoming) propose a set of useful tests for forecast rationality or optimality under squared error loss, including an easily implemented test based on a regression that only involves (long-horizon and short-horizon) forecasts and no observations on the target variable. We propose an extension, a simulation-based procedure that takes into account the presence of errors in parameter estimates. This procedure can also be applied in the field of 'backtesting' models for Value-at-Risk. Applications to simple AR and ARCH time series models show that its power in detecting certain misspecifications is larger than the power of well-known tests for correct Unconditional Coverage and Conditional Coverage.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"49 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1930841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Patton and Timmermann (2011, 'Forecast Rationality Tests Based on Multi-Horizon Bounds', Journal of Business & Economic Statistics, forthcoming) propose a set of useful tests for forecast rationality or optimality under squared error loss, including an easily implemented test based on a regression that only involves (long-horizon and short-horizon) forecasts and no observations on the target variable. We propose an extension, a simulation-based procedure that takes into account the presence of errors in parameter estimates. This procedure can also be applied in the field of 'backtesting' models for Value-at-Risk. Applications to simple AR and ARCH time series models show that its power in detecting certain misspecifications is larger than the power of well-known tests for correct Unconditional Coverage and Conditional Coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用多视界预测回测风险价值——评巴顿和蒂默曼的预测合理性检验
Patton和Timmermann(2011,“基于多视界的预测合理性测试”,《商业与经济统计杂志》,即将出版)提出了一组在平方误差损失下预测合理性或最优性的有用测试,包括一个基于回归的易于实施的测试,该测试只涉及(长期和短期)预测,而不涉及对目标变量的观察。我们提出了一个扩展,一个基于模拟的过程,考虑到参数估计中存在误差。此程序也可应用于风险价值的“回测”模型领域。对简单的AR和ARCH时间序列模型的应用表明,它在检测某些错误规范方面的能力比众所周知的正确无条件覆盖率和条件覆盖率测试的能力要大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1