A parallel Ant Colony System based on region decomposition for Taxi-Passenger Matching

Xin Situ, Wei-neng Chen, Yue-jiao Gong, Ying Lin, Wei-jie Yu, Zhiwen Yu, Jun Zhang
{"title":"A parallel Ant Colony System based on region decomposition for Taxi-Passenger Matching","authors":"Xin Situ, Wei-neng Chen, Yue-jiao Gong, Ying Lin, Wei-jie Yu, Zhiwen Yu, Jun Zhang","doi":"10.1109/CEC.2017.7969412","DOIUrl":null,"url":null,"abstract":"Taxi dispatch is a critical issue for taxi company to consider in modern life. This paper formulates the problem into a taxi-passenger matching model and proposes a parallel ant colony optimization algorithm to optimize the model. As the search space is large, we develop a region-dependent decomposition strategy to divide and conquer the problem. To keep the global performance, a critical region is defined to deal with the communications and interactions between the subregions. The experimental results verify that the proposed algorithm is effective, efficient, and extensible, which outperforms the traditional global perspective greedy algorithm in terms of both accuracy and efficiency.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Taxi dispatch is a critical issue for taxi company to consider in modern life. This paper formulates the problem into a taxi-passenger matching model and proposes a parallel ant colony optimization algorithm to optimize the model. As the search space is large, we develop a region-dependent decomposition strategy to divide and conquer the problem. To keep the global performance, a critical region is defined to deal with the communications and interactions between the subregions. The experimental results verify that the proposed algorithm is effective, efficient, and extensible, which outperforms the traditional global perspective greedy algorithm in terms of both accuracy and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域分解的并行蚁群系统出租车乘客匹配
出租车调度是出租车公司在现代生活中必须考虑的一个重要问题。本文将该问题转化为出租车-乘客匹配模型,并提出了一种并行蚁群优化算法对模型进行优化。由于搜索空间较大,我们开发了一种区域依赖分解策略来分而治之。为了保持全局性能,定义了一个关键区域来处理子区域之间的通信和交互。实验结果验证了该算法的有效性、高效性和可扩展性,在精度和效率上都优于传统的全局视角贪婪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1