Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein Assemblies, Illustrated by Microtubule and Electron Transfer Proteins

V. Fedorov, E. Kholina, I. Kovalenko, N. Gudimchuk
{"title":"Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein Assemblies, Illustrated by Microtubule and Electron Transfer Proteins","authors":"V. Fedorov, E. Kholina, I. Kovalenko, N. Gudimchuk","doi":"10.14529/jsfi180414","DOIUrl":null,"url":null,"abstract":"All-atom molecular dynamics simulation represents a computationally challenging, but powerful approach for studying conformational changes and interactions of biomolecules and their assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular dynamics studies range from thousands to tens of millions, while the simulated timescales span from nanoseconds to microseconds. For cost and computation efficiency, it is important to determine the optimal computer hardware for simulations of biomolecular systems of different sizes and timescales. Here we compare performance and scalability of 17 commercially available computational architectures, using molecular dynamics simulations of water and two different protein systems in GROMACS-5 package as computing benchmarks. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems in nanoseconds per day. These data can be used as practical guidelines for selection of optimal computer hardware for various molecular dynamics simulation tasks.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi180414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

All-atom molecular dynamics simulation represents a computationally challenging, but powerful approach for studying conformational changes and interactions of biomolecules and their assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular dynamics studies range from thousands to tens of millions, while the simulated timescales span from nanoseconds to microseconds. For cost and computation efficiency, it is important to determine the optimal computer hardware for simulations of biomolecular systems of different sizes and timescales. Here we compare performance and scalability of 17 commercially available computational architectures, using molecular dynamics simulations of water and two different protein systems in GROMACS-5 package as computing benchmarks. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems in nanoseconds per day. These data can be used as practical guidelines for selection of optimal computer hardware for various molecular dynamics simulation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同计算结构的性能分析:分子动力学在蛋白质组装中的应用,以微管和电子转移蛋白为例
全原子分子动力学模拟是研究不同种类生物分子及其组合的构象变化和相互作用的一种具有计算挑战性但功能强大的方法。在现代分子动力学研究中,通常模拟的粒子数从数千到数千万不等,模拟的时间尺度从纳秒到微秒不等。考虑到成本和计算效率,确定不同尺寸和时间尺度的生物分子系统模拟的最佳计算机硬件是很重要的。本文比较了17种商用计算架构的性能和可扩展性,使用GROMACS-5包中的水和两种不同蛋白质系统的分子动力学模拟作为计算基准。我们报告了现代cpu和gpu的各种组合的典型单节点性能,以及“Lomonosov-2”超级计算机在不同蛋白质系统的分子动力学模拟中的多节点性能(纳秒/天)。这些数据可以作为实际的指导方针,为各种分子动力学模拟任务选择最佳的计算机硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1