Robust Estimation for Hammerstein Models Based on Variational Inference

Zhengya Ma, Xiaoxu Wang, Rui Li, Haoran Cui
{"title":"Robust Estimation for Hammerstein Models Based on Variational Inference","authors":"Zhengya Ma, Xiaoxu Wang, Rui Li, Haoran Cui","doi":"10.1109/CAC57257.2022.10055938","DOIUrl":null,"url":null,"abstract":"The paper presents a robust identification method using variational inference (VI) for Hammerstein models in the presence of process noise and non-Gaussian colored measurement noise. First of all the measurements and process output are described as Student’s t and Gaussian distribution by using introduced variational parameters. Then the conjugate prior information of introduced parameters is framed for sake of a closed-loop solution. By applying the idea of VI, estimates of system parameters are got by minimizing Kullback-Leibler (KL) divergence. Finally, a numerical simulation example is used to show the effectiveness of the proposed identification method compared with the traditional method.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a robust identification method using variational inference (VI) for Hammerstein models in the presence of process noise and non-Gaussian colored measurement noise. First of all the measurements and process output are described as Student’s t and Gaussian distribution by using introduced variational parameters. Then the conjugate prior information of introduced parameters is framed for sake of a closed-loop solution. By applying the idea of VI, estimates of system parameters are got by minimizing Kullback-Leibler (KL) divergence. Finally, a numerical simulation example is used to show the effectiveness of the proposed identification method compared with the traditional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变分推理的Hammerstein模型鲁棒估计
针对存在过程噪声和非高斯有色测量噪声的Hammerstein模型,提出了一种基于变分推理(VI)的鲁棒识别方法。首先,通过引入变分参数,将测量结果和过程输出描述为学生t分布和高斯分布。然后对引入参数的共轭先验信息进行构造,得到闭环解。应用VI的思想,通过最小化Kullback-Leibler (KL)散度得到系统参数的估计。最后,通过一个数值仿真算例,对比了该方法与传统方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1