Answering Comparative Questions: Better than Ten-Blue-Links?

Matthias Schildwächter, Alexander Bondarenko, Julian Zenker, Matthias Hagen, Chris Biemann, Alexander Panchenko
{"title":"Answering Comparative Questions: Better than Ten-Blue-Links?","authors":"Matthias Schildwächter, Alexander Bondarenko, Julian Zenker, Matthias Hagen, Chris Biemann, Alexander Panchenko","doi":"10.1145/3295750.3298916","DOIUrl":null,"url":null,"abstract":"We present CAM (comparative argumentative machine), a novel open-domain IR system to argumentatively compare objects with respect to information extracted from the Common Crawl. In a user study, the participants obtained 15% more accurate answers using CAM compared to a \"traditional\" keyword-based search and were 20% faster in finding the answer to comparative questions.","PeriodicalId":187771,"journal":{"name":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3295750.3298916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We present CAM (comparative argumentative machine), a novel open-domain IR system to argumentatively compare objects with respect to information extracted from the Common Crawl. In a user study, the participants obtained 15% more accurate answers using CAM compared to a "traditional" keyword-based search and were 20% faster in finding the answer to comparative questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回答比较性问题:比十个蓝链接更好?
我们提出了CAM(比较论证机),这是一种新的开放域红外系统,可以根据从公共抓取中提取的信息进行论证性比较。在一项用户研究中,与“传统的”基于关键字的搜索相比,参与者使用CAM获得的答案要准确15%,在比较问题上找到答案的速度要快20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Health Consumers While Searching the Web through Medical Annotations Do Metrics Matter? Understanding Context for Tasks and Activities NotifyMeHere: Intelligent Notification Delivery in Multi-Device Environments Computational Surprise, Perceptual Surprise, and Personal Background in Text Understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1