Consistent HMM parameter estimation using Kerridge inaccuracy rates

Timothy L. Molloy, J. Ford
{"title":"Consistent HMM parameter estimation using Kerridge inaccuracy rates","authors":"Timothy L. Molloy, J. Ford","doi":"10.1109/AUCC.2013.6697250","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).","PeriodicalId":177490,"journal":{"name":"2013 Australian Control Conference","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUCC.2013.6697250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kerridge错误率的HMM参数估计
本文提出了一种基于Kerridge不准确率(KIR)概念的隐马尔可夫模型(HMM)参数在线估计方法。在温和可辨识的条件下,我们证明了我们的在线估计是强相合的。在仿真研究中,我们说明了我们提出的基于kir的在线估计器的收敛行为,并提供了一个反例来说明众所周知的递归最大似然估计器的局部收敛性质(可能是现有的最佳解决方案)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gap metric perspective of well-posedness for nonlinear feedback interconnections Heteroclinic optimal control solutions for attitude motion planning On the uniform global pre-asymptotic stability of closed sets for switched hybrid systems Control the active and reactive powers of three-phase grid-connected photovoltaic inverters using feedback linearization and fuzzy logic Active piezoelectric shunt control of an Atomic Force Microscope micro-cantilever
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1