{"title":"More secure Internet of Things using robust encryption algorithms against side channel attacks","authors":"L. Tawalbeh, T. Al-Somani","doi":"10.1109/AICCSA.2016.7945813","DOIUrl":null,"url":null,"abstract":"There are many recent revolutionary advances in information technology that include: wireless communication, the spread of mobile devices, and the Internet-of-Things (IoT). IoT will have an important role in connecting almost everything (mobile devices, cameras, home appliances, healthcare devices, military equipments, …, etc) to the Internet via different communication technologies such as Wi-Fi. This connection will have impact on many sectors of our life such as industry, economy, social life, and ICT sector. Moreover, there will be huge amounts of data (including financial and medical records for example) transmitted between those devices and the non-secure Internet. Some of these data might be very sensitive and their privacy and security must not be compromised. Here comes the need for Cryptographic systems to protect the vital data. There are many hardware and software implementations for the symmetric and asymmetric cryptographic algorithms such as AES, Elliptic Curve Cryptography, and RSA. And since we are talking about protecting physical devices connected to the Internet, we think that the hardware cryptosystems are more useful to be used in this case. In this paper, we introduce the IoT concept, applications, and challenges facing IoT. Then, we present the recent timing and fault Side Channel Attacks on cryptosystem implementations for the most secure encryption algorithms (AES, ECC, and RSA). Also, the countermeasures to protect these cryptosystems from such attacks are also presented.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
There are many recent revolutionary advances in information technology that include: wireless communication, the spread of mobile devices, and the Internet-of-Things (IoT). IoT will have an important role in connecting almost everything (mobile devices, cameras, home appliances, healthcare devices, military equipments, …, etc) to the Internet via different communication technologies such as Wi-Fi. This connection will have impact on many sectors of our life such as industry, economy, social life, and ICT sector. Moreover, there will be huge amounts of data (including financial and medical records for example) transmitted between those devices and the non-secure Internet. Some of these data might be very sensitive and their privacy and security must not be compromised. Here comes the need for Cryptographic systems to protect the vital data. There are many hardware and software implementations for the symmetric and asymmetric cryptographic algorithms such as AES, Elliptic Curve Cryptography, and RSA. And since we are talking about protecting physical devices connected to the Internet, we think that the hardware cryptosystems are more useful to be used in this case. In this paper, we introduce the IoT concept, applications, and challenges facing IoT. Then, we present the recent timing and fault Side Channel Attacks on cryptosystem implementations for the most secure encryption algorithms (AES, ECC, and RSA). Also, the countermeasures to protect these cryptosystems from such attacks are also presented.