A Novel Model for Explainable Hostel Recommender System Using Hybrid Filtering

Shahzad Ahmed Khan
{"title":"A Novel Model for Explainable Hostel Recommender System Using Hybrid Filtering","authors":"Shahzad Ahmed Khan","doi":"10.54692/lgurjcsit.2021.0502203","DOIUrl":null,"url":null,"abstract":"Recommender systems help humans in filtering and finding the right information from the enormous amount of data. Hostels are more famous than hotels for solo travelers, but no prior research related to recommender systems has been conducted in this domain. Hostels allow users to provide multi-criteria ratings and traditional recommender systems are not able to provide effective recommendations in case of multi-dimensionality i.e. contextual information and multi-criteriaratings. So, we have proposed a novel hybrid recommender system (SAFCHERS) that chooses the hostel's features for computation dynamically and provides explainable and better recommendations than the traditional recommender systems.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2021.0502203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recommender systems help humans in filtering and finding the right information from the enormous amount of data. Hostels are more famous than hotels for solo travelers, but no prior research related to recommender systems has been conducted in this domain. Hostels allow users to provide multi-criteria ratings and traditional recommender systems are not able to provide effective recommendations in case of multi-dimensionality i.e. contextual information and multi-criteriaratings. So, we have proposed a novel hybrid recommender system (SAFCHERS) that chooses the hostel's features for computation dynamically and provides explainable and better recommendations than the traditional recommender systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合过滤的可解释旅馆推荐系统模型
推荐系统帮助人们从大量的数据中过滤和找到正确的信息。对于独自旅行的人来说,旅社比酒店更有名,但在此之前还没有关于推荐系统的研究。旅舍允许用户提供多标准评分,而传统的推荐系统无法在多维度(即上下文信息和多标准)的情况下提供有效的推荐。因此,我们提出了一种新的混合推荐系统(SAFCHERS),它动态地选择旅馆的特征进行计算,并提供比传统推荐系统更好的可解释的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Microscopic Malaria Parasitized Images Using Deep Learning Feature Fusion A systematic review A Conversational interface agent for the export business acceleration Identification of Finger Vein Images with Deep Neural Networks Cloud Computing Services and Security Challenges: A Review Classifying Tweets with Keras and TensorFlow using RNN (Bi-LSTM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1