Size Estimation for Shrimp Using Deep Learning Method

Heng Zhou, Sunghoon Kim, Sang-Cheol Kim, Cheol-Won Kim, Seung-Won Kang
{"title":"Size Estimation for Shrimp Using Deep Learning Method","authors":"Heng Zhou, Sunghoon Kim, Sang-Cheol Kim, Cheol-Won Kim, Seung-Won Kang","doi":"10.30693/smj.2023.12.3.112","DOIUrl":null,"url":null,"abstract":"Shrimp farming has been becoming a new source of income for fishermen in South Korea. It is often necessary for fishers to measure the size of the shrimp for the purpose to understand the growth rate of the shrimp and to determine the amount of food put into the breeding pond. Traditional methods rely on humans, which has huge time and labor costs. This paper proposes a deep learning-based method for calculating the size of shrimps automatically. Firstly, we use fine-tuning techniques to update the Mask RCNN model with our farm data, enabling it to segment shrimps and generate shrimp masks. We then use skeletonizing method and maximum inscribed circle to calculate the length and width of shrimp, respectively. Our method is simple yet effective, and most importantly, it requires a small hardware resource and is easy to deploy to shrimp farms.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.3.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shrimp farming has been becoming a new source of income for fishermen in South Korea. It is often necessary for fishers to measure the size of the shrimp for the purpose to understand the growth rate of the shrimp and to determine the amount of food put into the breeding pond. Traditional methods rely on humans, which has huge time and labor costs. This paper proposes a deep learning-based method for calculating the size of shrimps automatically. Firstly, we use fine-tuning techniques to update the Mask RCNN model with our farm data, enabling it to segment shrimps and generate shrimp masks. We then use skeletonizing method and maximum inscribed circle to calculate the length and width of shrimp, respectively. Our method is simple yet effective, and most importantly, it requires a small hardware resource and is easy to deploy to shrimp farms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习方法的虾大小估计
养虾已成为韩国渔民的一项新收入来源。为了了解虾的生长速度和确定投入量,渔民经常需要测量虾的大小。传统的方法依赖于人力,这有巨大的时间和人力成本。提出了一种基于深度学习的虾尺寸自动计算方法。首先,我们使用微调技术使用我们的农场数据更新Mask RCNN模型,使其能够分割虾并生成虾面具。然后分别用骨架法和最大内切圆法计算虾的长度和宽度。我们的方法简单而有效,最重要的是,它只需要很少的硬件资源,并且很容易部署到虾场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification Exploring the Impact of Pesticide Usage on Crop Condition: A Causal Analysis of Agricultural Factors Journal of Knowledge Information Technology and Systems) Harvest Forecasting Improvement Using Federated Learning and Ensemble Model Apple detection dataset with visibility and deep learning detectionusing adaptive heatmap regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1