{"title":"On the Combination of Accuracy and Diversity Measures for Genetic Selection of Bagging Fuzzy Rule-Based Multiclassification Systems","authors":"Krzysztof Trawiński, A. Quirin, O. Cordón","doi":"10.1109/ISDA.2009.123","DOIUrl":null,"url":null,"abstract":"A preliminary study combining two diversity measures with an accuracy measure in two bicriteria fitness functions to genetically select fuzzy rule-based multiclassification systems is conducted in this paper. The fuzzy rule-based classification system ensembles are generated by means of bagging and mutual information-based feature selection. Several experiments were developed using four popular UCI datasets with different dimensionality in order to analyze the accuracy-complexity trade-off obtained by a genetic algorithm considering the two fitness functions. Comparison are made with the initial fuzzy ensemble and a single fuzzy classifier.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A preliminary study combining two diversity measures with an accuracy measure in two bicriteria fitness functions to genetically select fuzzy rule-based multiclassification systems is conducted in this paper. The fuzzy rule-based classification system ensembles are generated by means of bagging and mutual information-based feature selection. Several experiments were developed using four popular UCI datasets with different dimensionality in order to analyze the accuracy-complexity trade-off obtained by a genetic algorithm considering the two fitness functions. Comparison are made with the initial fuzzy ensemble and a single fuzzy classifier.