Chun-Jen Tsai, Han-Wen Kuo, Zi-Gang Lin, Zi-Jing Guo, Jun-Fu Wang
{"title":"A Java Processor IP Design for Embedded SoC","authors":"Chun-Jen Tsai, Han-Wen Kuo, Zi-Gang Lin, Zi-Jing Guo, Jun-Fu Wang","doi":"10.1145/2629649","DOIUrl":null,"url":null,"abstract":"In this article, we present a reusable Java processor IP for application processors of embedded systems. For the Java microarchitecture, we propose a low-cost stack memory design that supports a two-fold instruction folding pipeline and a low-complexity Java exception handling hardware. We also propose a mapping between the Java dynamic class loading model and the SoC platform-based design principle so that the Java core can be encapsulated as a reusable IP. To achieve this goal, a two-level method area with two on-chip circular buffers is proposed as an interface between the RISC core and the Java core. The proposed architecture is implemented on a Xilinx Virtex-5 FPGA device. Experimental results show that its performance has some advantages over other Java processors and a Java VM with JIT acceleration on a PowerPC platform.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2629649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this article, we present a reusable Java processor IP for application processors of embedded systems. For the Java microarchitecture, we propose a low-cost stack memory design that supports a two-fold instruction folding pipeline and a low-complexity Java exception handling hardware. We also propose a mapping between the Java dynamic class loading model and the SoC platform-based design principle so that the Java core can be encapsulated as a reusable IP. To achieve this goal, a two-level method area with two on-chip circular buffers is proposed as an interface between the RISC core and the Java core. The proposed architecture is implemented on a Xilinx Virtex-5 FPGA device. Experimental results show that its performance has some advantages over other Java processors and a Java VM with JIT acceleration on a PowerPC platform.