Md. Monirul Islam, Sharmin Akter, Md. Rokunojjaman, Jahid Hasan Rony, Al Amin, S. Kar
{"title":"Stroke Prediction Analysis using Machine Learning Classifiers and Feature Technique","authors":"Md. Monirul Islam, Sharmin Akter, Md. Rokunojjaman, Jahid Hasan Rony, Al Amin, S. Kar","doi":"10.24042/ijecs.v1i2.10393","DOIUrl":null,"url":null,"abstract":"Stroke is one of the fatal brain diseases that cause death in 3 to 10 hours. However, most stroke mortality can be prevented by identifying the nature of the stroke and reacting to it promptly through smart health systems. In this paper, a machine learning model is approached for predicting the existence of stroke of a patient where the Random forest classifier outperforms the state-of-the-art models, including Logistic Regression, Decision Tree Classifier (DTC), K-NN. We conduct the experiments on datasets which has 5110 observations with 12 attributes. We also applied EDA for preprocessing and feature techniques for balancing the datasets. Finally, a cloud-based mobile app collects user data to analyze and provide the possibility of stroke for alerting the person with the accuracy of precision 96%, recall 96%, and F1-score 96%. This user-friendly system can be a lifesaver as the person gets an essential warning very easily by providing very little information from anywhere with a mobile device.","PeriodicalId":190490,"journal":{"name":"International Journal of Electronics and Communications Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/ijecs.v1i2.10393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Stroke is one of the fatal brain diseases that cause death in 3 to 10 hours. However, most stroke mortality can be prevented by identifying the nature of the stroke and reacting to it promptly through smart health systems. In this paper, a machine learning model is approached for predicting the existence of stroke of a patient where the Random forest classifier outperforms the state-of-the-art models, including Logistic Regression, Decision Tree Classifier (DTC), K-NN. We conduct the experiments on datasets which has 5110 observations with 12 attributes. We also applied EDA for preprocessing and feature techniques for balancing the datasets. Finally, a cloud-based mobile app collects user data to analyze and provide the possibility of stroke for alerting the person with the accuracy of precision 96%, recall 96%, and F1-score 96%. This user-friendly system can be a lifesaver as the person gets an essential warning very easily by providing very little information from anywhere with a mobile device.