Application of Convolutional Neural Network in B-Rep Models Classification

Li Mengge, Wang Jihua
{"title":"Application of Convolutional Neural Network in B-Rep Models Classification","authors":"Li Mengge, Wang Jihua","doi":"10.1109/ICSGEA.2018.00056","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of expensive calculation and complex feature extraction of existing 3D models classification methods, this paper proposes a classification method based on convolutional neural network(CNN). This paper uses multi-view to represent 3D models, views contain information from multiple aspects of the model, and they have certain links. Constructing a convolutional neural network model, uses the features extracted from the multiple layers as a strongest descriptor. The classifier selects Softmax regression to solve the multiple classification experiments. The experimental results show that in 3D models classification CNN+Softmax had a higher accuracy rate compared to the traditional 3D models classification methods, whose accuracy rate is 86%.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of expensive calculation and complex feature extraction of existing 3D models classification methods, this paper proposes a classification method based on convolutional neural network(CNN). This paper uses multi-view to represent 3D models, views contain information from multiple aspects of the model, and they have certain links. Constructing a convolutional neural network model, uses the features extracted from the multiple layers as a strongest descriptor. The classifier selects Softmax regression to solve the multiple classification experiments. The experimental results show that in 3D models classification CNN+Softmax had a higher accuracy rate compared to the traditional 3D models classification methods, whose accuracy rate is 86%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络在B-Rep模型分类中的应用
针对现有3D模型分类方法计算量大、特征提取复杂等问题,提出了一种基于卷积神经网络(CNN)的分类方法。本文采用多视图来表示三维模型,视图包含了模型的多个方面的信息,它们之间具有一定的联系。构造卷积神经网络模型,利用多层提取的特征作为最强描述符。分类器选择Softmax回归来解决多个分类实验。实验结果表明,在3D模型分类中,CNN+Softmax比传统的3D模型分类方法具有更高的准确率,其准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Medium-Long Term Power Load Forecasting Method Based on Load Decomposition and Big Data Technology Design and Implementation of Intelligent Kitchen System Based on Internet of Things Condition Maintenance on Secondary Equipment of Relay Protection in Substation Information Acquisition Structure of Internet of Things Based on Intelligent Gateway between ZigBee and Ethernet Preliminary Study on a Fiber Optic Extrinsic Fabry-Perot Interferometer Sensor of Acoustic Detection for Partial Discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1