Investigating Phoneme Similarity with Artificially Accented Speech

Margot Masson, Julie Carson-Berndsen
{"title":"Investigating Phoneme Similarity with Artificially Accented Speech","authors":"Margot Masson, Julie Carson-Berndsen","doi":"10.18653/v1/2023.sigmorphon-1.6","DOIUrl":null,"url":null,"abstract":"While the deep learning revolution has led to significant performance improvements in speech recognition, accented speech remains a challenge. Current approaches to this challenge typically do not seek to understand and provide explanations for the variations of accented speech, whether they stem from native regional variation or non-native error patterns. This paper seeks to address non-native speaker variations from both a knowledge-based and a data-driven perspective. We propose to approximate non-native accented-speech pronunciation patterns by the means of two approaches: based on phonetic and phonological knowledge on the one hand and inferred from a text-to-speech system on the other. Artificial speech is then generated with a range of variants which have been captured in confusion matrices representing phoneme similarities. We then show that non-native accent confusions actually propagate to the transcription from the ASR, thus suggesting that the inference of accent specific phoneme confusions is achievable from artificial speech.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.sigmorphon-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While the deep learning revolution has led to significant performance improvements in speech recognition, accented speech remains a challenge. Current approaches to this challenge typically do not seek to understand and provide explanations for the variations of accented speech, whether they stem from native regional variation or non-native error patterns. This paper seeks to address non-native speaker variations from both a knowledge-based and a data-driven perspective. We propose to approximate non-native accented-speech pronunciation patterns by the means of two approaches: based on phonetic and phonological knowledge on the one hand and inferred from a text-to-speech system on the other. Artificial speech is then generated with a range of variants which have been captured in confusion matrices representing phoneme similarities. We then show that non-native accent confusions actually propagate to the transcription from the ASR, thus suggesting that the inference of accent specific phoneme confusions is achievable from artificial speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工重音语音的音素相似性研究
虽然深度学习革命在语音识别方面带来了显著的性能改进,但语音重音仍然是一个挑战。当前应对这一挑战的方法通常不寻求理解和解释口音语音的变化,无论它们是源于本地区域变化还是非本地错误模式。本文试图从基于知识和数据驱动的角度来解决非母语人士的差异。我们建议通过两种方法来近似非母语重音语音模式:一方面基于语音和语音知识,另一方面从文本到语音系统推断。然后,人工语音由一系列变体生成,这些变体在表示音素相似性的混淆矩阵中被捕获。然后我们表明,非母语口音混淆实际上从ASR传播到转录,从而表明口音特定音位混淆的推断是可以从人工语音中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1