An adaptive neuro fuzzy inference system for prediction of anxiety of students

S. Devi, Sanjay Kumar, G. Kushwaha
{"title":"An adaptive neuro fuzzy inference system for prediction of anxiety of students","authors":"S. Devi, Sanjay Kumar, G. Kushwaha","doi":"10.1109/ICACI.2016.7449795","DOIUrl":null,"url":null,"abstract":"In this paper authors propose design methodology and application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of anxiety of students using hybrid learning algorithm to improve the prediction based on the conventional model using questioner. Here, first order Sugeno fuzzy model considered whose parameters are tuned through hybrid learning algorithm. The performance of proposed model is verified in terms of the prediction errors. It is found that both Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are reduced significantly. The results establish that fusion of fuzzy logic and neural network with hybrid learning algorithm can be very useful in Psychological research.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper authors propose design methodology and application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of anxiety of students using hybrid learning algorithm to improve the prediction based on the conventional model using questioner. Here, first order Sugeno fuzzy model considered whose parameters are tuned through hybrid learning algorithm. The performance of proposed model is verified in terms of the prediction errors. It is found that both Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are reduced significantly. The results establish that fusion of fuzzy logic and neural network with hybrid learning algorithm can be very useful in Psychological research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应神经模糊推理系统的学生焦虑预测
本文提出了基于混合学习算法的自适应神经模糊推理系统(ANFIS)在学生焦虑预测中的设计方法和应用,以改进传统的基于提问者的预测模型。本文考虑一阶Sugeno模糊模型,该模型的参数通过混合学习算法进行调整。从预测误差的角度验证了该模型的性能。结果表明,平均绝对百分比误差(MAPE)和均方根误差(RMSE)均显著减小。结果表明,模糊逻辑和神经网络混合学习算法的融合在心理学研究中是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short term traffic flow prediction based on on-line sequential extreme learning machine Computational intelligent color normalization for wheat plant images to support precision farming A new time-dependent algorithm for post enrolment-based course timetabling problem Semi-automatic construction of thyroid cancer intervention corpus from biomedical abstracts Improvement of spatial data clustering algorithm in city location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1