Human Face Recognition Based on Principal Component Analysis and Particle Swarm Optimization-BP Neural Network  

Lei Du, Zhenhong Jia, Liang Xue
{"title":"Human Face Recognition Based on Principal Component Analysis and Particle Swarm Optimization-BP Neural Network  ","authors":"Lei Du, Zhenhong Jia, Liang Xue","doi":"10.1109/ICNC.2007.418","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved face recognition method based on the combination of Principal Component Analysis and Neural Networks. This method adopts Principal Component Analysis (PCA) to abstract principal eigenvectors of the image in order to get best feature description, hence to reduce the number of inputs of neural networks. After this, these image data of reduced dimensions are input into a feed forward neural network to be trained. The weights of neural networks are optimized using Particle Swarm Optimization (PSO) algorithm. Then this well-trained network is tested using samples from standard human face database. The results show that this method gains higher recognition rate in contrast with some other methods.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper proposes an improved face recognition method based on the combination of Principal Component Analysis and Neural Networks. This method adopts Principal Component Analysis (PCA) to abstract principal eigenvectors of the image in order to get best feature description, hence to reduce the number of inputs of neural networks. After this, these image data of reduced dimensions are input into a feed forward neural network to be trained. The weights of neural networks are optimized using Particle Swarm Optimization (PSO) algorithm. Then this well-trained network is tested using samples from standard human face database. The results show that this method gains higher recognition rate in contrast with some other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析和粒子群优化- bp神经网络的人脸识别
提出了一种基于主成分分析和神经网络相结合的改进人脸识别方法。该方法采用主成分分析(PCA)对图像的主特征向量进行抽象,以获得最佳特征描述,从而减少神经网络的输入次数。然后将这些降维后的图像数据输入到前馈神经网络中进行训练。采用粒子群算法对神经网络的权值进行优化。然后使用标准人脸数据库中的样本对训练好的网络进行测试。结果表明,与其他方法相比,该方法具有较高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1