MEMS-based pressure sensor with a superoleophobic membrane for measuring droplet vibration

Thanh-Vinh Nguyen, Hidetoshi Takahashi, I. Shimoyama
{"title":"MEMS-based pressure sensor with a superoleophobic membrane for measuring droplet vibration","authors":"Thanh-Vinh Nguyen, Hidetoshi Takahashi, I. Shimoyama","doi":"10.1109/TRANSDUCERS.2017.7994257","DOIUrl":null,"url":null,"abstract":"We report on a sensor design to measure the vibration of small droplets. The sensor consists of a piezoresistive cantilever and a chamber covered with a superoleophobic membrane. The vibration of a droplet on the membrane causes the pressure of the chamber to change. Since the cantilever is able to detect a pressure change of less than 0.1 Pa, the vibration of the droplet can be precisely measured by the cantilever. In comparison to previously developed MEMS-based force sensor to measure the droplet vibration, the current sensor design offers several benefits including: wide range of usable liquids, simple sensing scheme (only one sensor is required) and capability to be disposable. With these advantages, our method is believed to be useful in measuring viscosity of small droplet for point-of-care application.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We report on a sensor design to measure the vibration of small droplets. The sensor consists of a piezoresistive cantilever and a chamber covered with a superoleophobic membrane. The vibration of a droplet on the membrane causes the pressure of the chamber to change. Since the cantilever is able to detect a pressure change of less than 0.1 Pa, the vibration of the droplet can be precisely measured by the cantilever. In comparison to previously developed MEMS-based force sensor to measure the droplet vibration, the current sensor design offers several benefits including: wide range of usable liquids, simple sensing scheme (only one sensor is required) and capability to be disposable. With these advantages, our method is believed to be useful in measuring viscosity of small droplet for point-of-care application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于mems的压力传感器,带有超疏油膜,用于测量液滴振动
我们报告了一种测量小液滴振动的传感器设计。该传感器由压阻悬臂和覆盖超疏油膜的腔室组成。液滴在膜上的振动会引起腔室压力的变化。由于悬臂能够检测小于0.1 Pa的压力变化,因此可以通过悬臂精确测量液滴的振动。与以前开发的用于测量液滴振动的基于mems的力传感器相比,当前的传感器设计提供了几个优点,包括:广泛的可用液体,简单的传感方案(只需要一个传感器)和一次性的能力。有了这些优点,我们的方法被认为是有用的测量粘度小液滴点护理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full integration of a dielectric elastomer actuator with a flexible 1 kV thin-film transistor Fully casted stretchable triboelectric device for energy harvesting and sensing made of elastomeric materials Local magnetization and sensing of flexible magnetic tag for long-term monitoring under wet environment Broadband frequency viscositymeasurement using low TCF shear mode resonators consisting of C-axis tilted scaln thin film on thick at-cut quartz plate Analysis of environmental bacteria at single-cell level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1