{"title":"A probabilistic kernel approach for solving the multi-instance learning problems with different assumptions","authors":"Lixin Shen, Jianjun He, Shuang Qiao","doi":"10.1504/IJAOM.2013.055881","DOIUrl":null,"url":null,"abstract":"Multi-instance learning (MIL) has received more and more attentions in the machine learning research field due to its theoretical interest and its applicability to diverse real-world problems. In this paper, we present a probabilistic kernel approach for the multi-instance learning problems with various multi-instance assumptions by imposing Gaussian process prior on an unobservable latent function defined on the instance space. Because the relationship between the bag and its instances, triggered by the multi-instance assumption, can be exactly captured by defining the likelihood function, we can deal with different multi-instance assumptions by employing different likelihood functions. Experimental results on several multi-instance problems show that the proposed algorithms are valid and can achieve superior performance to the published MIL algorithms.","PeriodicalId":191561,"journal":{"name":"Int. J. Adv. Oper. Manag.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Adv. Oper. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAOM.2013.055881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-instance learning (MIL) has received more and more attentions in the machine learning research field due to its theoretical interest and its applicability to diverse real-world problems. In this paper, we present a probabilistic kernel approach for the multi-instance learning problems with various multi-instance assumptions by imposing Gaussian process prior on an unobservable latent function defined on the instance space. Because the relationship between the bag and its instances, triggered by the multi-instance assumption, can be exactly captured by defining the likelihood function, we can deal with different multi-instance assumptions by employing different likelihood functions. Experimental results on several multi-instance problems show that the proposed algorithms are valid and can achieve superior performance to the published MIL algorithms.