Software Development for the Use of Generalized Parabolic Blending in Data Prediction Processes

Hakan Üstünel
{"title":"Software Development for the Use of Generalized Parabolic Blending in Data Prediction Processes","authors":"Hakan Üstünel","doi":"10.35377/saucis...1122506","DOIUrl":null,"url":null,"abstract":"Parabolic blending (PB) is one of the important topics in applied mathematics and computer graphics. The use of generalized parabolic blending (GPB) for different scenarios adds flexibility to the polynomial. Overhauser (OVR) elements is a special case in GPB (r=0.5, s=0.5). GPB can also be used in estimation. In this study, data obtained from thickness distribution of a 3mm thick high impact polystyrene product after thermoforming using a mold was used for data estimation. For this purpose, software has been developed. The software development steps and formula usages are explained. Using the developed software, polynomials for GPB and default PB (OVR) were created. The data set was compared with the y values produced by the polynomials for certain x values. At the end of the research, it was determined that the results obtained from the GPB were 0.1728 percent more accurate than the data obtained from the PB for the default values.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1122506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parabolic blending (PB) is one of the important topics in applied mathematics and computer graphics. The use of generalized parabolic blending (GPB) for different scenarios adds flexibility to the polynomial. Overhauser (OVR) elements is a special case in GPB (r=0.5, s=0.5). GPB can also be used in estimation. In this study, data obtained from thickness distribution of a 3mm thick high impact polystyrene product after thermoforming using a mold was used for data estimation. For this purpose, software has been developed. The software development steps and formula usages are explained. Using the developed software, polynomials for GPB and default PB (OVR) were created. The data set was compared with the y values produced by the polynomials for certain x values. At the end of the research, it was determined that the results obtained from the GPB were 0.1728 percent more accurate than the data obtained from the PB for the default values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据预测过程中使用广义抛物混合的软件开发
抛物混合是应用数学和计算机图形学中的一个重要课题。在不同情况下使用广义抛物混合(GPB)增加了多项式的灵活性。Overhauser (OVR)元素是GPB中的一种特殊情况(r=0.5, s=0.5)。GPB也可以用于估计。在本研究中,使用模具热成型后3mm厚高冲击聚苯乙烯产品的厚度分布数据进行数据估计。为此,开发了软件。说明了软件的开发步骤和公式用法。利用开发的软件,建立了GPB和默认PB (OVR)的多项式。将数据集与多项式对某些x值产生的y值进行比较。在研究结束时,确定从GPB获得的结果比从PB获得的默认值的数据准确0.1728%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1