Guidewire Tip Tracking using U-Net with Shape and Motion Constraints

I. Ullah, Philip Chikontwe, Sang Hyun Park
{"title":"Guidewire Tip Tracking using U-Net with Shape and Motion Constraints","authors":"I. Ullah, Philip Chikontwe, Sang Hyun Park","doi":"10.1109/ICAIIC.2019.8669088","DOIUrl":null,"url":null,"abstract":"In recent years, research has been carried out using a micro-robot catheter instead of classic cardiac surgery performed using a catheter. To accurately control the micro-robot catheter, accurate and decisive tracking of the guidewire tip is required. In this paper, we propose a method based on the deep convolutional neural network (CNN) to track the guidewire tip. To extract a very small tip region from a large image in video sequences, we first segment small tip candidates using a segmentation CNN architecture, and then extract the best candidate using shape and motion constraints. The segmentation-based tracking strategy makes the tracking process robust and sturdy. The tracking of the guidewire tip in video sequences is performed fully-automated in real-time, i.e., 71 ms per image. For two-fold cross-validation, the proposed method achieves the average Dice score of 88.07% and IoU score of 85.07%.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent years, research has been carried out using a micro-robot catheter instead of classic cardiac surgery performed using a catheter. To accurately control the micro-robot catheter, accurate and decisive tracking of the guidewire tip is required. In this paper, we propose a method based on the deep convolutional neural network (CNN) to track the guidewire tip. To extract a very small tip region from a large image in video sequences, we first segment small tip candidates using a segmentation CNN architecture, and then extract the best candidate using shape and motion constraints. The segmentation-based tracking strategy makes the tracking process robust and sturdy. The tracking of the guidewire tip in video sequences is performed fully-automated in real-time, i.e., 71 ms per image. For two-fold cross-validation, the proposed method achieves the average Dice score of 88.07% and IoU score of 85.07%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用U-Net跟踪形状和运动约束的导丝尖端
近年来,研究人员使用微型机器人导管代替传统的心脏手术使用导管。为了精确控制微型机器人导管,需要对导丝尖端进行精确而果断的跟踪。本文提出了一种基于深度卷积神经网络(CNN)的导丝尖端跟踪方法。为了从视频序列中的大图像中提取非常小的尖端区域,我们首先使用分割CNN架构对小尖端候选区域进行分割,然后使用形状和运动约束提取最佳候选区域。基于分段的跟踪策略使跟踪过程具有鲁棒性和稳健性。视频序列中导丝尖端的跟踪是全自动实时执行的,即每张图像71毫秒。经过二次交叉验证,本文方法的Dice平均得分为88.07%,IoU平均得分为85.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1