A Method for Scalable First-Order Rule Learning on Twitter Data

Monica Senapati, L. Njilla, P. Rao
{"title":"A Method for Scalable First-Order Rule Learning on Twitter Data","authors":"Monica Senapati, L. Njilla, P. Rao","doi":"10.1109/ICDEW.2019.000-1","DOIUrl":null,"url":null,"abstract":"We propose a method for scalable first-order rule learning on large-scale Twitter data. By learning rules, probabilistic inference queries can be executed to reason over the data to ascertain its veracity. Our method employs a divide-and-conquer approach, graph-based modeling, and data parallel processing during rule learning using a commodity cluster to overcome the problem of slow structure learning on large-scale Twitter data. The first-order predicates (constructed on the posts) are first partitioned in a balanced way by pivoting around users to reduce the chance of missing relevant rules. By constructing a weighted graph and applying graph partitioning, balanced partitions of the ground predicates can be created. Each partition is then processed using an existing structure learning approach to get the set of rules for that partition. We report a preliminary evaluation of our method to show that it offers a promising solution for scalable first-order rule learning on Twitter data.","PeriodicalId":186190,"journal":{"name":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2019.000-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a method for scalable first-order rule learning on large-scale Twitter data. By learning rules, probabilistic inference queries can be executed to reason over the data to ascertain its veracity. Our method employs a divide-and-conquer approach, graph-based modeling, and data parallel processing during rule learning using a commodity cluster to overcome the problem of slow structure learning on large-scale Twitter data. The first-order predicates (constructed on the posts) are first partitioned in a balanced way by pivoting around users to reduce the chance of missing relevant rules. By constructing a weighted graph and applying graph partitioning, balanced partitions of the ground predicates can be created. Each partition is then processed using an existing structure learning approach to get the set of rules for that partition. We report a preliminary evaluation of our method to show that it offers a promising solution for scalable first-order rule learning on Twitter data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推特数据可扩展一阶规则学习方法
我们提出了一种基于大规模Twitter数据的可扩展一阶规则学习方法。通过学习规则,可以执行概率推理查询来对数据进行推理以确定其准确性。我们的方法采用了分而治之的方法、基于图的建模和使用商品集群的规则学习过程中的数据并行处理,以克服大规模Twitter数据上缓慢的结构学习问题。一阶谓词(在帖子上构造)首先以平衡的方式围绕用户进行划分,以减少丢失相关规则的机会。通过构造一个加权图并应用图分区,可以创建基础谓词的平衡分区。然后使用现有的结构学习方法处理每个分区,以获得该分区的规则集。我们报告了对我们的方法的初步评估,表明它为Twitter数据上可扩展的一阶规则学习提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Triangle Counting on GPU Using Fine-Grained Task Distribution Distilling Knowledge from User Information for Document Level Sentiment Classification Reachability in Large Graphs Using Bloom Filters Food Image to Cooking Instructions Conversion Through Compressed Embeddings Using Deep Learning Predicting Online User Purchase Behavior Based on Browsing History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1