{"title":"IoT Protocols Based Fog/Cloud over High Traffic","authors":"Istabraq M. Al-Joboury, E. Al-Hemiary","doi":"10.22042/isecure.2019.11.3.23","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) becomes the future of a global data field in which the embedded devices communicate with each other, exchange data and making decisions through the Internet. IoT could improve the quality of life in smart cities, but a massive amount of data from different smart devices could slow down or crash database systems. In addition, IoT data transfer to Cloud for monitoring information and generating feedback that will lead to high delay in infrastructure level. Fog Computing can help by offering services closer to edge devices. In this paper, we propose an efficient system architecture to mitigate the problem of delay. We provide performance analysis like response time, throughput and packet loss for MQTT (Message Queue Telemetry Transport) and HTTP (Hyper Text Transfer Protocol) protocols based on Cloud or Fog servers with large volume of data from emulated traffic generator working alongside one real sensor . We implement both protocols in the same architecture, with low cost embedded devices to local and Cloud servers with different platforms. The results show that HTTP response time is 12.1 and 4.76 times higher than MQTT Fog and Cloud based located in the same geographical area of the sensors respectively. The worst case in performance is observed when the Cloud is public and outside the country region. The results obtained for throughput shows that MQTT has the capability to carry the data with available bandwidth and lowest percentage of packet loss. We also prove that the proposed Fog architecture is an efficient way to reduce latency and enhance performance in Cloud based IoT.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/isecure.2019.11.3.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The Internet of Things (IoT) becomes the future of a global data field in which the embedded devices communicate with each other, exchange data and making decisions through the Internet. IoT could improve the quality of life in smart cities, but a massive amount of data from different smart devices could slow down or crash database systems. In addition, IoT data transfer to Cloud for monitoring information and generating feedback that will lead to high delay in infrastructure level. Fog Computing can help by offering services closer to edge devices. In this paper, we propose an efficient system architecture to mitigate the problem of delay. We provide performance analysis like response time, throughput and packet loss for MQTT (Message Queue Telemetry Transport) and HTTP (Hyper Text Transfer Protocol) protocols based on Cloud or Fog servers with large volume of data from emulated traffic generator working alongside one real sensor . We implement both protocols in the same architecture, with low cost embedded devices to local and Cloud servers with different platforms. The results show that HTTP response time is 12.1 and 4.76 times higher than MQTT Fog and Cloud based located in the same geographical area of the sensors respectively. The worst case in performance is observed when the Cloud is public and outside the country region. The results obtained for throughput shows that MQTT has the capability to carry the data with available bandwidth and lowest percentage of packet loss. We also prove that the proposed Fog architecture is an efficient way to reduce latency and enhance performance in Cloud based IoT.