Mm-Wave 60 GHz Channel Fading Effects Analysis Based on RBF Neural Network

Wei Hu, S. Geng, Xiongwen Zhao
{"title":"Mm-Wave 60 GHz Channel Fading Effects Analysis Based on RBF Neural Network","authors":"Wei Hu, S. Geng, Xiongwen Zhao","doi":"10.1109/ICCCS49078.2020.9118409","DOIUrl":null,"url":null,"abstract":"In this paper, based on mm-wave 60 GHz channel measurements performed in large hall and corridor for both LoS and NLoS scenarios, channel fading effects like received power, path loss and shadowing are investigated based on radial basis function (RBF) neural network model. Results show that RBF model can fit measurement data better than traditional back propagation (BP) machine learning (ML) method with larger coefficient of determination and smaller root mean square error (RMSE). Neural network models can accurately predict channel parameters, indicates the advances of ML in channel modeling. The presented results are useful in design of 5G wireless communication systems and system development.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, based on mm-wave 60 GHz channel measurements performed in large hall and corridor for both LoS and NLoS scenarios, channel fading effects like received power, path loss and shadowing are investigated based on radial basis function (RBF) neural network model. Results show that RBF model can fit measurement data better than traditional back propagation (BP) machine learning (ML) method with larger coefficient of determination and smaller root mean square error (RMSE). Neural network models can accurately predict channel parameters, indicates the advances of ML in channel modeling. The presented results are useful in design of 5G wireless communication systems and system development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBF神经网络的毫米波60ghz信道衰落效应分析
本文基于大型大厅和走廊的60 GHz毫米波通道测量,基于径向基函数(RBF)神经网络模型,研究了接收功率、路径损耗和阴影等信道衰落效应。结果表明,与传统的BP机器学习方法相比,RBF模型具有更大的决定系数和更小的均方根误差(RMSE),可以更好地拟合测量数据。神经网络模型可以准确地预测通道参数,表明机器学习在通道建模方面的进步。所得结果对5G无线通信系统的设计和系统开发具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1