Towards Optimal Design of Data Hiding Algorithms Against Nonparametric Adversary Models

A. Cárdenas, G. Moustakides, J. Baras
{"title":"Towards Optimal Design of Data Hiding Algorithms Against Nonparametric Adversary Models","authors":"A. Cárdenas, G. Moustakides, J. Baras","doi":"10.1109/CISS.2007.4298440","DOIUrl":null,"url":null,"abstract":"This paper presents a novel zero-sum watermarking game between a detection algorithm and a data hiding adversary. Contrary to previous research, the detection algorithm and the adversary we consider are both nonparametric in a continuous signal space, and thus they have no externally imposed limitations on their allowed strategies except for some distortion constraints. We show that in this framework no deterministic detection algorithm is optimal. We then find optimal randomized detection algorithms for different distortion levels and introduce a new performance tradeoff between completeness and accuracy when a detection algorithm does not have enough evidence to make an accurate decision.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel zero-sum watermarking game between a detection algorithm and a data hiding adversary. Contrary to previous research, the detection algorithm and the adversary we consider are both nonparametric in a continuous signal space, and thus they have no externally imposed limitations on their allowed strategies except for some distortion constraints. We show that in this framework no deterministic detection algorithm is optimal. We then find optimal randomized detection algorithms for different distortion levels and introduce a new performance tradeoff between completeness and accuracy when a detection algorithm does not have enough evidence to make an accurate decision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向非参数对手模型的数据隐藏算法优化设计
本文提出了一种新的零和水印检测算法与数据隐藏对手之间的博弈方法。与以往的研究相反,我们考虑的检测算法和对手在连续信号空间中都是非参数的,因此除了一些失真约束外,它们对所允许的策略没有外部强加的限制。我们证明了在这个框架中没有确定的检测算法是最优的。然后,我们找到了针对不同失真水平的最佳随机检测算法,并在检测算法没有足够的证据来做出准确决策时,在完整性和准确性之间引入了一种新的性能权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Primary Transmitters via Cooperation and Memory in Cognitive Radio Profit Maximizing Pricing Strategies for Dynamic Spectrum Allocation Correlated Sources over an Asymmetric Multiple Access Channel with One Distortion Criterion Minimax and Maxmin Solutions to Gaussian Jamming in Block-Fading Channels under Long Term Power Constraints A High-Throughput Cross-Layer Scheme for Distributed Wireless Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1