Scalable and Reconfigurable Architecture of Modified KD-Tree ML-Classifier with 5-Point Searching

Xin-Yu Shih, Chen-Yen Song
{"title":"Scalable and Reconfigurable Architecture of Modified KD-Tree ML-Classifier with 5-Point Searching","authors":"Xin-Yu Shih, Chen-Yen Song","doi":"10.1109/ICCE-Taiwan55306.2022.9869284","DOIUrl":null,"url":null,"abstract":"This paper proposes a reconfigurable hardware architecture of modified KD-tree machine-learning classifier. As compared to current literature, this hardware is the first KD-tree-like hardware implementation. As compared with original KD-tree algorithm, our design can deliver a very low latency in hardware because we do not need the data traversal steps along the binary tree. Meanwhile, this scalable hardware can be easily constructed if supporting a greater number of data instances to be classified. In the hardware implementation with TSMC 40-nm CMOS technology, our synthesizable hardware achieves a maximum frequency of 401.6 MHz, only occupying an area of 0.562 mm2.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a reconfigurable hardware architecture of modified KD-tree machine-learning classifier. As compared to current literature, this hardware is the first KD-tree-like hardware implementation. As compared with original KD-tree algorithm, our design can deliver a very low latency in hardware because we do not need the data traversal steps along the binary tree. Meanwhile, this scalable hardware can be easily constructed if supporting a greater number of data instances to be classified. In the hardware implementation with TSMC 40-nm CMOS technology, our synthesizable hardware achieves a maximum frequency of 401.6 MHz, only occupying an area of 0.562 mm2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于5点搜索的改进KD-Tree ml分类器的可扩展可重构结构
提出了一种改进kd树机器学习分类器的可重构硬件结构。与目前的文献相比,这个硬件是第一个类似于kd树的硬件实现。与原来的KD-tree算法相比,我们的设计可以提供非常低的硬件延迟,因为我们不需要沿着二叉树进行数据遍历步骤。同时,如果支持更多要分类的数据实例,则可以轻松构建这种可伸缩的硬件。在采用台积电40纳米CMOS技术的硬件实现中,我们的可合成硬件实现了401.6 MHz的最高频率,仅占用0.562 mm2的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications Performance Evaluation of Fault-Tolerant Routing Methods Using Parallel Programs Down-Sampling Dark Channel Prior of Airlight Estimation for Low Complexity Image Dehazing Chip Design Image Confusion Applied to Industrial Defect Detection System On Multimodal Semantic Consistency Detection of News Articles with Image Caption Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1