Autonomous Location of the Welding Workspace in the Box Girder

Kejia Sun, Jihao Liu, Lin Zhang, Tianrui Zhao, Yanzheng Zhao
{"title":"Autonomous Location of the Welding Workspace in the Box Girder","authors":"Kejia Sun, Jihao Liu, Lin Zhang, Tianrui Zhao, Yanzheng Zhao","doi":"10.1109/ICMA57826.2023.10216119","DOIUrl":null,"url":null,"abstract":"Automatic welding of box girders can greatly increase production efficiency. To locate the welding workspace, it is necessary to reconstruct a map of the box girder and extract features from it. In this paper, we propose a robust LiDAR-inertial odometry (LIO) to build the map and a feature extraction method to locate the webs. For the LIO, we implement map loading and map update function based on FAST-LIO2. The map loading function sets prior values for map building, which will improve its accuracy and matching success rate. And we propose a new data structure, Mark-ikd-Tree, to update the map, which can ensure the freshness of it. For the point cloud feature extraction method, we propose a density-based planar extraction method for the webs in box girders. This method can detect the webs quickly, accurately and without missing. Finally, after obtaining the coordinates of the webs, we estimate the welding workspace by the relative position relationship of the webs and the weld. We validate our method in the experiment section. The positioning error of the webs is around 2 cm.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10216119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic welding of box girders can greatly increase production efficiency. To locate the welding workspace, it is necessary to reconstruct a map of the box girder and extract features from it. In this paper, we propose a robust LiDAR-inertial odometry (LIO) to build the map and a feature extraction method to locate the webs. For the LIO, we implement map loading and map update function based on FAST-LIO2. The map loading function sets prior values for map building, which will improve its accuracy and matching success rate. And we propose a new data structure, Mark-ikd-Tree, to update the map, which can ensure the freshness of it. For the point cloud feature extraction method, we propose a density-based planar extraction method for the webs in box girders. This method can detect the webs quickly, accurately and without missing. Finally, after obtaining the coordinates of the webs, we estimate the welding workspace by the relative position relationship of the webs and the weld. We validate our method in the experiment section. The positioning error of the webs is around 2 cm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
箱梁焊接工作空间的自主定位
箱梁自动焊接可大大提高生产效率。为了确定焊接工作空间,需要重建箱梁图并从中提取特征。在本文中,我们提出了一种鲁棒lidar -惯性里程计(LIO)来构建地图,并提出了一种特征提取方法来定位蛛网。对于LIO,我们实现了基于FAST-LIO2的地图加载和地图更新功能。地图加载函数设置了地图构建的先验值,提高了地图构建的精度和匹配成功率。我们提出了一种新的数据结构——Mark-ikd-Tree来更新地图,保证了地图的新鲜度。对于点云特征提取方法,提出了一种基于密度的箱梁腹板平面提取方法。该方法能快速、准确、不漏网。最后,在得到腹板的坐标后,根据腹板与焊缝的相对位置关系估计焊接工作空间。我们在实验部分验证了我们的方法。腹板的定位误差在2厘米左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICMA 2023 Conference Info A Parameter Fluctuation Impact Analysis Algorithm for The Control of Sealing Performance Stability Research on Composite Control Strategy of Off-Grid PV Inverter under Nonlinear Asymmetric Load A Low-Cost Skiing Motion Capture System Based on Monocular RGB Camera and MINS Fusion INS/GNSS/UWB/OD Robust Navigation Algorithm Based on Factor Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1